• Title/Summary/Keyword: Middle wall

Search Result 378, Processing Time 0.032 seconds

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

Impact of Indoor Green in Rest Space on Fatigue Recovery Among Manufacturing Workers (휴게공간에서의 식물 도입이 생산직 근로자의 피로 회복에 미치는 효과)

  • ChoHye Youn;LeeBom Chung;Minji Kang;Juyoung Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2024
  • Manufacturing workers face increased fatigue and stress due to environmental factors in workplace such as noise and vibration. Addressing this issue requires creating conducive rest spaces; however, the existing conditions of rest spaces in manufacturing workplace are subpar and lack sufficient scholarly evidence. This study investigated the effect of nature-based rest spaces on the physical and emotional recovery from fatigue on manufacturing workers. Three manufacturing complexes with nature-friendly rest spaces were selected, and 63 manufacturing workers participated in the study. The measurement tools included the Multidimensional Fatigue Scale (MFS) for fatigue levels, physiological indicators (blood pressure and heart rate), and emotional indicators (Zuckerman Inventory of Personal Reaction Scale; ZIPERS, Perceived Restorativeness Scale; PRS, Profile of Mood States; POMS and State-Trait Anxiety Inventory; STAI). The study compared recovery levels during a 7-minute rest between a space without plants and a space with natural elements. The results indicated a significant reduction in systolic and diastolic blood pressure of participants in green rest spaces compared with those in conventional rest spaces. Regarding fatigue levels, green rest spaces showed a decrease in systolic blood pressure in the middle-fatigue and high-fatigue groups. Positive feelings increased in green spaces, whereas negative emotions decreased, suggesting that short breaks in nature-friendly environments effectively promote workers' physical and emotional recovery. Furthermore, this study emphasizes the importance of green space in various work environments to promote well-being in workers.

On the High Yield Pulping of Fir by Pressurized Refining (가압(加壓)리화이닝법(法)에 의한 젓나무의 고수율(高收率)펄프 제조(製造)에 관한 연구(研究))

  • Cho, Nam Seok;Jo, Byoung Muk
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.44-55
    • /
    • 1981
  • Neutral sulfite precooked fir chips were refined in the Asplund Laboratory Defibrator at various temperature ($20^{\circ}C$, $120^{\circ}C$ and $180^{\circ}C$). The effects of refining temperatures on the physical property and morphological structure of the resulting pulps were discussed. Yields of precooked chips (84%, 92% and 100%) and refining temperature affected remarkably the yield of refined pulp, its beatability, sheet strength and morhphological characteristics. Pulp yield and beatability decreased with increasing refining temperature. Fiber surface of unbeaten pulp from precooked chips of 84% yield was to some extent covered by the secondary wall, while that of the pulp form precooked yield of 92% by the compound middle lamella. In the case of uncooked chips, fibers were damaged heavily, and the exposed fiber surface resulted from the equal amount of the secondary wall and the compound middle lamella. In the case of pulps prepared from precooked chips of higher yields (92% and 100%), sheet strength increased linearly as sheet density increased. But at the same sheet density, pulp from lower precooked yield (84%) had better sheet strength after open discharge refining as compared to pressurized refining, because pulp from the former had much amounts of fines fraction of higher water retention value than the latters. And there was observed a little difference in fiber length distribution but nearly similar in its morphology with increasing refining temperature.

  • PDF

Shaping characteristics of two different motions nickel titanium file: a preliminary comparative study of surface profile and dentin chip (두 가지 다른 행정의 니켈 티타늄 파일의 성형 성상: 표면 성상, 상아질 삭편과 도말층에 대한 예비적 비교 연구)

  • Park, So-Ra;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Purpose: To assess the surface profile of dentinal wall, dentin chips and smear layer during the canal shaping with rotary (ProTaper) and ProFile and reciprocating (WaveOne) nickel-titanium file. Materials and Methods: Sixty human extracted mandibular premolars and incisors with single canals were randomly selected. Three experimental groups (n = 20) were instrumented with ProTaper (F2), ProFile (25/.06), WaveOne (25/.08) with irrigation of 2.5% NaOCl. The dentin chips were collected from flute of file during each canal preparation. After canal preparation, roots were grinded and each group was divided into two subgroups (n = 10) for surface profile and smear layer of dentinal wall of shaped root canal. Each specimen was observed under scanning electron microscope for evaluating size of dentin chips, root canal surface recessions and smear layer. Scores of Smear layer were statistically analyzed using Kruskal Wallis test and Mann Whitney test at P = 0.05 level. Results: The size of dentin chips from ProFile, ProTaper and WaveOne was up to $7{\mu}m$, $6.5{\mu}m$, and$4{\mu}m$, respectively. In the surface profile, the width of surface irregularity was measured and Profile, ProTaper and WaveOne was up to $150{\mu}m$, $70{\mu}m$, and $80{\mu}m$, respectively. Completely cleaned root canals were not found. In the middle and apical third of the canals, WaveOne group showed higher smear layer score than ProFile and ProTaper groups (P < 0.05). Conclusion: Within limits of this study, reciprocating motion WaveOne group was not significant difference of shaping ability with the full-sequence ProFile and ProTaper systems except canal clearness of middle and apical third of root canal. When using WaveOne to shaping root canal, thorough root canal irrigation is recommended.

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

A Study on the Paleotopographic and Structural Analyses of Cherwon Castle in Taebong (태봉 철원도성의 고지형과 구조 분석 연구)

  • HEO, Uihaeng;YANG, Jeongseok
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.38-55
    • /
    • 2021
  • Cherwon Castle is located in Pungcheonwon, Cherwon, in the center of the Korean Peninsula. Currently, it is split across the Demilitarized Zone (DMZ) between the two Koreas. It attracts attention as a symbol of inter-Korean reconciliation and as cultural heritage that serves as data in making important policy decisions on the DMZ. Despite its importance, however, there has not been sufficient investigation and research done on Cherwon Castle. This is due to the difficulty involved in investigation and research and is caused by the site's inaccessibility. As a solution, the current investigative methods in satellite and aerial archeology can be applied to interpret and analyze the structure of Cherwon Castle and the features of its inner space zoning. Cherwon Castle was built on the five flat hills that begin in the northern mountainous hills and stretch to the southwest. The inner and outer walls were built mainly on the hilly ridges, and the palace wall was built surrounding a flat site that was created on the middle hill. For each wall, the sites of the old gates, which were erected in various directions , have been identified. They seem to have been built to fit the direction of buildings in the castle and the features of the terrain. The castle was built in a diamond shape. The old sites of the palace and related buildings and landforms related to water drainage were identified. It was verified that the roads and the gates were built to run from east to west in the palace. In the spaces of the palace and the inner castle, flat sites were created to fit different landforms, and building sites were arranged there. Moreover, the contour of a reservoir that is believed to be the old site of a pond has been found; it lies on the vertical extension of the center line that connects the palace and the inner castle. Between the inner castle and the outer castle, few vestiges of old buildings were found, although many flat sites were discovered. Structurally, Cherwon Castle is rotated about nine degrees to the northeast, forming a planar rectangle. The planar structure derives from the castle design that mimics the hilly landform, and the bending of the southwestern wall also attests to the intention of the architects to avoid the wetland. For now, it is impossible to clearly describe the functions and characters of the building sites inside the castle. However, it is believed that the inner castle was marked out for space for the palace and government offices, while the space between the outer and inner castle was reserved as the living space for ordinary people. The presence of the hilly landform diminishes the possibility that a bangri (grid) zoning system existed. For some of the landforms, orderly zoning cannot be ruled out, as flat areas are commonly seen. As surveys have yet to be conducted on the different castles, the time when the walls were built and how they were constructed cannot be known. Still, the claim to that the castle construction and the structuring of inner spaces were inspired by the surrounding landforms is quite compelling.

Origin of Layering and Its Relation to Magma Convection in the Skaergaard Intrusion (Skaergaard 암체에서 layering의 기원과 그의 마그마 대류와의 관계)

  • Yun D. Jang
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.627-648
    • /
    • 2001
  • At least two distinct types of layering are present in the middle zone of the Skaergaard intrusion; alternating plagioclase-rich and pyroxene-rich, macro-rhythmic layers, and smaller scale, modally-graded, rhythmic layers. The macro-rhythmic layers are ubiquitous in the middle zone of the Layered Series, but are not observed in the lower and upper zone of the Layered Series or in the wall or roof tories of the intrusion. They range from 0.3 to 17.3 m in thickness, have sharp upper and lower boundaries, and can be traced laterally for over 2 ]fm in outcrop. Although individual macrorhythmic layers are not internally graded, many contain smaller-scale, modally-graded layers. Modally-graded. rhythmic layers are a common feature of the Layered Series but are not abundant in either the Upper Border Series or the Marginal Border Series. They range in thickness from 1 to 50 cm and can be traced laterally in outcrop for up to 100 m. Their lateral termination ranges from abrupt to gradational, and they are often associated with cut and fill structures and crossbedding suggestive of current activity. They are characterized by sharp lower and gradational upper contacts, and by strong intra-layer modal grading with olivine, ilmenite, and magnetite concentrated at the base, pyroxene concentrated above the base, and plagioclase concentrated at the top. The layers are also grain-size graded with the maximum size for each phase occurring at the horizon in the layer where the phase is most abundant. Modally-graded, rhythmic layers in the middle zone of the Layered Series occur within both plagioclase-rich and pyroxene-rich macro-rhythmic layers.

  • PDF

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

Management of Recurrent Cerebral Aneurysm after Surgical Clipping : Clinical Article

  • Kim, Pius;Jang, Suk Jung
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.212-218
    • /
    • 2018
  • Objective : Surgical clipping of the cerebral aenurysm is considered as a standard therapy with endovascular coil embolization. The surgical clipping is known to be superior to the endovascular coil embolization in terms of recurrent rate. However, a recurrent aneurysm which is initially treated by surgical clipping is difficult to handle. The purpose of this study was to research the management of the recurrent cerebral aneurysm after a surgical clipping and how to overcome them. Methods : From January 1996 to December 2015, medical records and radiologic findings of 14 patients with recurrent aneurysm after surgical clipping were reviewed retrospectively. Detailed case-by-case analysis was performed based on preoperative, postoperative and follow-up radiologic examinations and operative findings. All clinical variables including age, sex, aneurysm size and location, type and number of applied clips, prognosis, and time to recurrence are evaluated. All patients are classified by causes of the recurrence. Possible risk factors that could contribute to those causes and overcoming ways are comprehensively discussed. Results : All recurrent aneurysms after surgical clipping were 14 of 2364 (0.5%). Three cases were males and 11 cases were females. Mean age was 52.3. At first treatment, nine cases were ruptured aneurysms, four cases were unruptured aneurysms, and one case was unknown. Locations of recurrent aneurysm were determined; anterior communicating artery (A-com) (n=7), posterior communicating artery (P-com) (n=3), middle cerebral artery (n=2), anterior cerebral artery (n=1) and basilar artery (n=1). As treatment of the recurrence, 11 cases were treated by surgical clipping and three cases were treated by endovascular coil embolization. Three cases of all 14 cases occurred in a month after the initial treatment. Eleven cases occurred after a longer interval, and three of them occurred after 15 years. By analyzing radiographs and operative findings, several main causes of the recurrent cerebral aneurysm were found. One case was incomplete clipping, five cases were clip slippage, and eight cases were fragility of vessel wall near the clip edge. Conclusion : This study revealed main causes of the recurrent aneurysm and contributing risk factors to be controlled. To manage those risk factors and ultimately prevent the recurrent aneurysm, neurosurgeons have to be careful in the technical aspect during surgery for a complete clipping without a slippage. Even in a perfect surgery, an aneurysm may recur at the clip site due to a hemodynamic change over years. Therefore, all patients must be followed up by imaging for a long period of time.

A study of asbestos containing material characteristics and grade of risk assessment in schools, Korea (일부 학교 건축물의 석면함유 건축자재(ACM) 특성과 위해등급에 관한 연구)

  • Jung, Joon-sig;Park, Hyung-kyu;Song, Hyea-suk;Lee, Won-jeong;Kim, Yoon-shin;Jeon, Hyung-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5029-5037
    • /
    • 2015
  • The objective of this study is to investigate the distribution of asbestos containing materials and to evaluate risk assessment method in some schools, Korea. For the survey on ACM risk assessment, we used both EPA AHERA rule and ASTM rule. We investigated 100 schools between January and December in 2010. Detection rate of the ACM according to construction year showed that before 1980's, 1990's, 2000's, after 2000's buildings were 100%, 94.1%, 100% and 62.5%, respectively. Compared with school types, detection rate of the ACM in Kindergarten, Elementary, Middle, High, Special Education schools were 100%, 97.1%, 92.9%, 100%, 80%, respectively. Ceiling textiles contained chrysolite/mixed amosite(2~8 %) and wall cement flat boards contained chrysolite(6~11 %). Also, gasket contained chrysolite(16~17 %), slate roof contained chrysolite(10~13 %). In this study, risk assessment EPA AHERA rule of ACM showed that all materials were "Pool" grade. And, ASTM rule risk assessment showed that all materials were "Q&M program" grade.