• Title/Summary/Keyword: Microwave output power

Search Result 184, Processing Time 0.021 seconds

Microwave Drying of Sawdust for Pellet Production: Kinetic Study under Batch Mode

  • Bhattarai, Sujala;Oh, Jae-Heun;Choi, Yun Sung;Oh, Kwang Cheol;Euh, Seung Hee;Kim, Dae Hyun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.385-397
    • /
    • 2012
  • Purpose: Drying characteristics of sawdust was studied under batch mode using lab scale microwave dryer. The objective of this study was to investigate the effect of material load and microwave output power on drying characteristics of sawdust. Methods: Material load and microwave output power were varied from 23 to 186 g and 530 to 370 W respectively. Different kinetic models were tested to fit the drying rates of sawdust. Similarly, the activation energy was calculated by employing the Arrhenius equation. Results: The drying efficiency increased considerably, whereas the specific energy consumption significantly decreased with increase in material load and microwave output power. The cumulative energy efficiency increased by 9%, and the specific energy consumption decreased by 8% when the material load was increased from 23 to 186 g. The effective diffusivity increased with decrease in material load and increase in microwave output power. The previously published model gave the best fit for data points with $R^2$ and RMSE values of 0.999 and 0.01, respectively. Conclusions: The data obtained from this study could be used as a basis for modeling of large scale industrial microwave dryers for the pellet production.

A Study of Microwave Waste Tire Pyrolysis in a Batch Reactor (회분식 반응기에서의 마이크로파 폐타이어 열분해 연구)

  • KIM, SEONG-SOO
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.577-583
    • /
    • 2017
  • A series of microwave waste tire pyrolysis experiments were conducted using a lab-scale batch reactor to delineate the effects of microwave ouput power on the pyrolysis behavior of waste tire. As results of experiments, it was found that as the microwave output power was increased from 1.22 kW/kg to 2.26 kW/kg, the reaction temperature and oil yield increased significantly and the required time and microwave power consumption decreased remarkably, respectively. With increased power consumption, the content of the fixed carbon of pyrolysis residue increased.

A Study of High Power Microwave Output by K-band Waveguide (K-band 도파관을 이용한 대전력 마이크로파 출력장치 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.588-591
    • /
    • 2009
  • We had experimental studies of microwave output generator. We experimented with a corrugate-shped K-band slow wave guide in the backward wave oscillator. It generated output 표 interaction between electron beam's generation and magnetic field. We estimated oscillation frequency at 24GHz by changing propagation velocity and group velocity. We identified movement by second harmonic of Cherencov interaction and slow cyclotron mode. In our study we achieved oscillation stabilization, generation of long pulse, improvement of oscillation efficiency and output.

The Pyrolytic Behavior Waste Tire under Microwave Heating (마이크로파 가열에 의한 폐타이어 열분해 거동)

  • Kim, Seong-Soo;Kim, Ji-Geon;Cho, Jung-Lae;Park, Dong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.471-474
    • /
    • 2008
  • The pyrolytic behavior of waste tire under microwave heating was investigated. Experiments were conducted using a lab- and bench-scale system to delineate the effects of microwave output power on the response. As the results of experiments, it was found that as the microwave output power was increased between 0.84 and 3.04 kW/kg, the oil yield and required time rapidly increased and decreased, respectively. With further increase of the microwave output power, the oil yield and required time did not change significantly.

  • PDF

A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating

  • Nakatani, Keigo;Ishizaki, Toshio
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • The magnetron, a vacuum tube, is currently the usual high-power microwave power source used for microwave heating. However, the oscillating frequency and output power are unstable and noisy due to the low quality of the high-voltage power supply and low Q of the oscillation circuit. A heating system with enhanced reliability and the capability for control of chemical reactions is desired, because microwave absorption efficiency differs greatly depending on the object being heated. Recent studies on microwave high-efficiency power amplifiers have used harmonic processing techniques, such as class-F and inverse class-F. The present study describes a high-efficiency 100 W GaN-HEMT amplifier that uses a harmonic processing technique that shapes the current and voltage waveforms to improve efficiency. The fabricated GaN power amplifier obtained an output power of 50.4 dBm, a drain efficiency of 72.9%, and a power added efficiency (PAE) of 64.0% at 2.45 GHz for continuous wave operation. A prototype microwave heating system was also developed using this GaN power amplifier. Microwaves totaling 400 W are fed from patch antennas mounted on the top and bottom of the microwave chamber. Preliminary heating experiments with this system have just been initiated.

A Study on Constant Power Control of Half Bridge Inverter for Microwave Oven

  • Lee, Min-Ki;Koh, Kang-Hoon;Lee, Hyun--Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.73-79
    • /
    • 2004
  • For the global microwave market, high RF power or deluxe model is applying for inverter gradually. In this paper, 120[V]/1200[W] high power inverter is proposed and verified by an optimized design of PFM type. Especially the steady power output control was fulfilling at +/- 10[%] input voltage variation.

A Compact C-Band 50 W AlGaN/GaN High-Power MMIC Amplifier for Radar Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Han, Byoung-Gon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.498-501
    • /
    • 2014
  • A C-band 50 W high-power microwave monolithic integrated circuit amplifier for use in a phased-array radar system was designed and fabricated using commercial $0.25{\mu}m$ AlGaN/GaN technology. This two-stage amplifier can achieve a saturated output power of 50 W with higher than 35% power-added efficiency and 22 dB small-signal gain over a frequency range of 5.5 GHz to 6.2 GHz. With a compact $14.82mm^2$ chip area, an output power density of $3.2W/mm^2$ is demonstrated.

A Ka-Band 6-W High Power MMIC Amplifier with High Linearity for VSAT Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.546-549
    • /
    • 2013
  • A Ka-band 6-W high power microwave monolithic integrated circuit amplifier for use in a very small aperture terminal system requiring high linearity is designed and fabricated using commercial 0.15-${\mu}m$ GaAs pHEMT technology. This three-stage amplifier, with a chip size of 22.1 $mm^2$ can achieve a saturated output power of 6 W with a 21% power-added efficiency and 15-dB small signal gain over a frequency range of 28.5 GHz to 30.5 GHz. To obtain high linearity, the amplifier employs a class-A bias and demonstrates an output third-order intercept point of greater than 43.5 dBm over the above-mentioned frequency range.

Design of Variable Power Distributor and Waveguide Connecting Structure for Wireless Microwave Power Transmission in a Building (실내 마이크로파 배전 전송계를 위한 가변전력분배기와 도파관의 결합구조 설계)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1477-1482
    • /
    • 2012
  • This paper deals with a new variable microwave power distributor and a connector between a deck plate and a input power waveguide for indoor microwave wireless power transmission. We design a new type connector built in the 3-stage coaxial line structure, and calculate the return loss of the connector at 2.45GHz. Newly designed connector shows the excellent return loss performance less than -30dB at the operating frequency of 2.45GHz. And we show a power distributor in which the dividing ratio of the power is controlled mechanically by three rotary fins. The distributor can control the dividing power from 4.5% to 58% with the variance of 5% output power. The experimentally tested results of the distributor are good agreement with the simulation within the return loss of 1%.

Matching-type Power Dividing Switch for Low Reflection in Indoor Microwave Power Distribution (실내 마이크로파 배전용 완전 정합형 전력 분배 스위치의 설계)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.792-797
    • /
    • 2013
  • In a indoor microwave power distribution system, matching-type power dividing switch is proposed and designed with a various power dividing ratio. A matching coaxial cable probe is used behind the output probe for the reflecting power absorption. Reflecting characteristics of the matching coaxial cable probe are calculated by analyzing the S-parameter of this structure. Newly proposed matching-type switch shows a very low return loss less than -30dB at the operating frequency of 2.45GHz with a dividing power ratio of 50.2%. The simulated results by use of 3-stage power divider shows a good agreement with the theoretical estimation for the various combination of the different switching ratio.