• Title/Summary/Keyword: Microwave irradiation time

Search Result 76, Processing Time 0.025 seconds

Blowout of Rubber Vulcanizates: Influences of Cure Systems, Content of Carbon Black, and Organic Addities

  • 최성신;김익식
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.174-178
    • /
    • 1998
  • Blowout of NR and SBR vulcanizates was studied using a microwave oven. Rubber vulcanizates with different contents of carbon black (0, 30, 50, 70 phr) and various cure systems (conventional, semi-EV, and EV) were prepared. Unfilled rubber vulcanizates did not exploded by irradiation of microwave, while carbon black-filled ones exploded within 10 min. A blowout time of the carbon black-filled rubber vulcanizate decreases with an increase of the content of carbon black in the vulcanizate. A blowout temperature of the organic additive-extracted vulcanizate is higher than that of the not-extracted one, but the extracted vulcanizate blows out faster than the not-extracted one. A blowout temperature of the overcured vulcanizate is higher than that of the undercured one with the same cure system. Temperatures of unfilled SBR vulcanizates heated by the microwave irradiation are lower than those of unfilled NR ones. The carbon black-filled SBR vulcanizates blow out at higher temperatures than the carbon black-filled NR ones. Blowout times of the carbon black-filled SBR vulcanizates are longer than those of the carbon black-filled NR ones.

Extraction of Total Flavonoids from Lemongrass Using Microwave Energy: Optimization Using CCD-RSM (마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sick;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • In this study, we measured total flavonoids after extracting the total flavonoids from lemongrass which is known to have a high content of antioxidant ingredients when using microwave energy. Also, optimal extraction conditions of active ingredients using central composite design-response surface methodology (CCD-RSM) were presented. Both ultrapure water and alcohol were used as extraction solvents and the volume ratio of ethanol/ultrapure water, microwave irradiation time, and microwave irradiation power were set as independence variables. And the extraction yield and total flavonoids were measured. The optimal extraction conditions using CCD-RSM were the volume ratio of ethanol/ultrapure water = 56.3 vol.%, the microwave irradiation time = 6.1 min, and the microwave irradiation power = 574.6 W. We could also obtain expected results of yield = 17.2 wt.% and total flavonoids = 44.7 ㎍ QE/mL dw under the optimum conditions. The comprehensive satisfaction degree of this formula was 0.8562. The P-value was calculated for the yield of 0.037 and the total flavonoids content of 0.002. The average error from actual experiments established for the verification of conclusions was lower than 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimization of extraction process.

Kinetics on the Microwave Carbonization of Rice Chaff (왕겨의 마이크로파 탄화속도)

  • Kim, Ji Hyun;Ryu, Seung Kon;Kim, Dong Kook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.683-690
    • /
    • 2005
  • The microwave carbonization of rice chaff was performed, and their kinetics were compared to those of conventional thermal carbonization. Thermal carbonization was carried out at $300-600^{\circ}C$ for 30 minutes. The weight loss and C/H mole ratio remarkably increased as increase of temperature, while there was no carbonization by microwave dielectric heating in spite of increasing incident power and irradiation time. However, microwave carbonization was successfully performed by addition of 6 wt% of thermal carbonized rice chaff, it's C/H mole ratio is larger than 3.0, as a catalytic initiator to uncarbonized rice chaff, and the kinetics was depended on the incident power and irradiation time, resulting in the coincide with thermal carbonization to the Arrhenius equation. The activation energy of microwave carbonization was quite low as compared to that of thermal carbonization, while the kinetic constant was large. This is due to the internal volumetric heating characteristics of carbonized rice chaff by microwave. The effect of ash, and C/H mole ratio and amount of carbonized rice chaff were investigated on microwave carbonization.

Microwave Drying of Food Waste (음식물 쓰레기의 마이크로파 건조)

  • 김덕찬;현준호;변자진;이동원;문경환
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.133-140
    • /
    • 1998
  • The food wastes from a refectory and an eating house were heated in domestic microwave oven(700W) equipped with a fan and the drying rates and destruction of microorganisms were investigated. The drying rate was decreased with the size of food waste and the food wastes in polypropylene basket were dried faster than that on glass dish. The rate was increased with lower initial moisture content. Death rate of microorganisms was also decreased with the size of food waste. Ninety eight percent of reduction in viable cell numbers for the 400g of food waste could be achieved in 240sec of microwave irradiation. The growth of microorganisms in food wastes after microwave irradiated was observed at $32^{\circ}C$ and 95% relative humidity after 7days and the cell numbers in microwave irradiated food wastes were found to be 1/2 ~ 1/20 of the numbers in untreated wastes in accordance with the mass and the length of exposed time to microwave. To minimize the moisture and microorganisms in food wastes, the use of microwave oven are recommended.

  • PDF

Fixation of Cellular Ultrastructure by the Microwave Irradiation (마이크로파 조사에 의한 세포 미세구조의 고정 효과)

  • Shin, Kil-Sang;Kim, Wan-Jong;Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.26 no.4
    • /
    • pp.401-410
    • /
    • 1996
  • The microwave fixator has recently been introduced in morphological research. The present study was carried out to investigate the ultrastructural effects of microwave fixation of rat brain. kidney, liver and skeletal muscle tissues. The results are as follows: In the case of microwave fixed cerebrum. the cytoplasmic processes of neurons and the various membranous organelles such as nuclear envelope, mitochondria, rough endoplasmic reticulum and Golgi apparatus were well preserved, The myelin sheath wrapping neuronal axon was prominent. Microwave fixed hepatocytes showed the microvilli on the free surface of bile canaliculus, the evident nucleolar components, and typical organelles. In nephron, ultrastructures of glomerulus and Bowman's capsule were preserved, and also tubular wall were structurally observed. Among the skeletal muscle cells, plentiful collagen fibers were appeared, myofibrils and mitochondria were typically observed. In conclusion, the microwave fixation procedures result in an good preservation of the tissues and would be time- and reagent-saving.

  • PDF

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

Optimization of Pre-Treatment Conditions for Hydrocarbons Detection from Irradiated Soybean Using Microwave-Assiated Extraction (마이크로파 추출법을 이용한 방사선 조사 대두의 Hydrocarbons 분석 전처리조건 최적화)

  • Lee, Jeong-Eun;Kwon, Joong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.612-621
    • /
    • 2013
  • Microwave-assisted extraction (MAE), which is known as less time and less solvent than current extraction methods, was applied to hydrocarbons extraction from irradiated soybean. Among the transported agricultural products, soybean was selected as representative samples for possible application of irradiated treatment and identification of radiation-induced markers. Using 4 kGy-irradiated soybean, different microwave extraction conditions (extraction time and microwave power) were applied and the changes in hydrocarbon concentrations were monitored. The predicted optimum extracted condition for hydrocarbon analysis of soybean was found to be microwave extraction with a microwave power of 97 W and extraction time of 2.2 min. This extraction time was significantly lower compared to the common extraction time of 12-24hr.

Improvement of Au Leaching from Gold Concentrates Using a Microwave and Thiourea-mixed Solvent (마이크로웨이브를 이용한 금정광 내 금 용출 효율 증가 기작)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this research, we investigate the effect of microwave pretreatment on the recovery of gold from the gold concentrates by thiourea leaching. The changes in mineral phases by decomposition of pyrites in the gold concentrates using microwave were observed, and the result of microwave irradiation showed that the temperature of the irradiated sample increases with increasing irradiation time. With the reaction of temperature increases, Sulfur (S) in pyrites was converted to sulfur dioxide (SO2), and then the content of S in the sample was reduced. The analytical results of XRD and SEM-EDS showed that pyrites are converted to magnetite and hematite, and its surfaces are changed to a porous shape where micro-cracks are developed. The Au leaching efficiency from the irradiated gold concentrates using thiourea-mixed solvent increased with the increases of irradiation time and solvent concentration. The experimental results considering leaching parameters indicate that the mechanism of microwave irradiation increases the maximum leaching efficiency and leaching rate of the gold concentrates, and the solvent does a role for the increasing of leaching rate constant.

Microwave-assisted synthesis of $Cu_2O$ and Cu from $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$ ($Cu_2(OH)_3(CH_3COO){\cdot}H_2O$로 부터 마이크로파를 이용한 $Cu_2O$와 Cu의 합성)

  • Song, Ha-Chul;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.166-171
    • /
    • 2006
  • [ $Cu_2O$ ] and Cu have been synthesized from the layered organic-inorganic hybrid, $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$, assisted by microwave irradiation. $Cu_2O$ is formed in aqueous glucose solution, while metallic Cu is formed in ethylene glycol by reduction of $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$. The influence of microwave irradiation time and concentration of glucose on $Cu_2O$ particles formation and growth has been examined. The morphologies of $Cu_2O$ particles change from spheres with a few fm size to nanowires with diameter of 40 nm as increasing the microwave irradiation times.

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide (마이크로파 조사가 산화그래핀의 화학적 박리에 미치는 효과)

  • Lee, Jae-Hee;Hwang, Ki-Wan;Jeong, Young-Hoon;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.708-713
    • /
    • 2013
  • Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.