• Title/Summary/Keyword: Microwave ferrite

Search Result 102, Processing Time 0.03 seconds

Magnetic and Microwave Absorbing Properties of M-type Ba-ferrite($BaFe_{12-2X}Ti_XCo_XO_{19}$)with Planar Magnetic Anisortropy (면내 자기이방성을 갖는 M-type Ba-ferrite($BaFe_{12-2X}Ti_XCo_XO_{19}$)의 자기적특성 및 전파흡수특성)

  • 조한신;김성수
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.22-26
    • /
    • 1998
  • The purpose of this experimenL is to investigate the magnetic anisotropy and microwave absorbing properties in M-type Bat territe (${BaFe}_{12-2X}{A}_{X}{Me}_{X}{O}_{19}$), where $Fe_{3+}$ is substituted by $Ti_{4+}$ in A site and $Co_{2+}$ in Me site. The saturation magnetization (Ms) is linearly decreased with the substitution rate(x) and the coerciviLy (He) is rapidly decreased in accordance with the reduction in t the magnetocrystalline anisotropy For the specimen with x=0.8 and thickness of 2 mm, the reflection loss calculated from the n material constants is less than -10 dB (90% absorption) in the frequency range of 10~16 GHz. The absorption loss is pre이.ctcd t to be more than 20 dElern in the frequency range of 12-16 GHz. The results demonstrate that the Ti-Co substituted M-type Ba-ferrite can be effectively used as a microwave absorber at high frequency range.

  • PDF

A Study on Development of High Performance Microwave Absorbers in Wide-Band Type for RADAR (레이다용 광대력형 고성능 전파흡수체의 개발에 관한 연구)

  • 김동일;안영섭;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • The coaxial sample holder with 20mm in diameter and the adaptor from type N connector-to-20mm${\phi}$ coaxial tube are designed and manufactured which have been used for designing and measuring the fabricated microwave absorber. In addition, the measure in method of material constants of the microwave absorbers is described, which is focused on minimizing the error due to the sample's shapes, the fitting conditions, etc. After describing the design method of a single-layed microwave absorber, the microwave absorbers for X-band, C-band and S-band RADARs are designed and fabricated, respectively, which are composed of ferrite, carborn, and binder and have good performance. Futhermore, we develop the high performance microwave absorber in extremely wide-band type for RADAR, which is composed of different material and its mixing ratio and which could cover nearly from 4 to 10 GHz.

  • PDF

Effect of Carbon Addition and Influence of Heat-treatment Temperature on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}Cu_{0.1}Zn_{0.4}Fe_2O_4$-Rubber Composite ($Ni_{0.5}Cu_{0.1}Zn_{0.4}Fe_2O_4$ Ferrite-Rubber Composite의 전파흡수특성에 미치는 열처리 온도의 영향 및 Carbon 첨가효과)

  • 윤국태;이찬규;박연준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.14-20
    • /
    • 2001
  • The structure, shape, size, and magnetic properties of Ni$_{0.5}$Cu$_{0.1}$Zn$_{0.4}$Fe$_2$O$_4$ have been investigated as a function of annealing temperatures. In order to control the microwave absorbing properties of ferrite-rubber composite and the complex losses (magnetic loss and conduction loss), the effect of carbon addition was also studied. It was found that the coercive force decreased with increasing heat-treatment temperatures. Relative complex permeability and reflection loss were measured by the network analyzer. As a result, the natural resonance occurred in the low frequency tinge, and the matching frequency of the ferrite-rubber composite prepared at 130$0^{\circ}C$ was found to be lower. As heat-treatment temperatures were increased, the magnetic loss ($\mu$$_{r}$", $\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.

  • PDF

Design and Properties of Ferrite Absorber Used in Anechoic Chamber (전파무향실용 페라이트 흡수체의 설계 및 특성)

  • 한대희;김진석;오길남;조성백;김성수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.4
    • /
    • pp.40-46
    • /
    • 1994
  • Design and microwave absorbing properties of ferrite plate are investigated for the application to the radiowave absorbers used in anechoic chamber. The required frequency-dependence of complex permeability is determined on the basis of wave-impedance-matching relationship. The plate thickness and matchingfrequency are determined from the complex permeability and dielectric constant, and then compared with the directly measured reflection loss. A systematic variation of material constants and their influence on the microwave absorbing properties are demonstrated.

  • PDF

Microwave Properties of Ba-$Co_2Z$ Ferrite with Zn addition (Zn 첨가에 따른 Ba-$Co_2Z$ 페라이트의 마이크로파 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Koh, Jung-Hyuk;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.299-299
    • /
    • 2010
  • In this study, microwave properties with compositions and frequency of the $Ba_3Co_2Fe_{24}O_{41}$ ceramics with Zn substitution for Co were investigated. From the XRD patterns, hexagonal structure of Z-type phase was existed as main phase. Diffraction peaks of Z-type phase were shifted to lower angle by Zn substituted for Co site. The permittivity was increased with Zn additions. In all composition, loss tangent of permittivities were increased with frequency. Permeability and magnetic resonance frequency were increased with Zn additions. Permeability was increased and loss tangent of permeability was decreased rapidly over 600 MHz~800 MHz. The loss tangent of permeability did not changed with composition ratio. In the case of $Ba_3Co_{1.6}Zn_{0.4}Fe_{24}O_{41}$ ceramics sintered at $1250^{\circ}C$ for 3 hours, the permittivity, loss tangent of permittivity, permeability and loss tangent of permeability were 28.277, 0.193, 22.992 and 0.065 at 310 MHz, respectively.

  • PDF