• Title/Summary/Keyword: Microvessels

Search Result 37, Processing Time 0.033 seconds

Blood-neural barrier: its diversity and coordinated cell-to-cell communication

  • Choi, Yoon-Kyung;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2008
  • The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

Segmentation of Microvessels using Color Feature (칼라 특성값을 이용한 신생혈관의 분할)

  • 최익환;최현주;황해길;조남훈;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.176-179
    • /
    • 2002
  • Angiogenesis는 존재하는 혈관으로부터 새로운 혈관이 생성되는 과정으로, 암의 성장과 전이에 있어서 필수적 요소이다. 특히, 신생혈관의 밀도는 암의 성장과 밀접한 상관관계를 가지고 있으므로 암의 진단과 예후 추정을 위한 판단근거로 사용되고 있다. 본 연구는 신생혈관의 밀도를 정확한 수치로 정량화 하기 위하여, 칼라 특성값을 이용하여 신생혈관을 분할하였다. 분류기 생성을 위한 학습집단은 신생혈관영역, 배경영역에서 각각 100개씩 픽셀을 추출하였다. 추출된 픽셀에서 9개의 칼라 특성값(R,G,B,H,S,I,I₁,I₂,I₃)을 계산하고, 다변량 판별분석을 이용하여 3개의 분류기를 생성하고 분할된 결과를 비교분석하였다. 분할된 결과를 비교하면 RGB와 I₁ I₂ I₃ 칼라 특성값을 이용하여 생성된 분류기에 의해 분할된 결과가 전문가 의견과 높은 상관관계를 나타내었다.

  • PDF

Detection of Gastrointestinal Cancer using Linked Color Imaging and Blue Light Imaging (위장관암 발견에 있어 Linked Color Imaging와 Blue Light Imaging의 유용성)

  • Yoo, In Kyung;Cho, Joo Young;Osawa, Hiroyuki
    • Journal of Digestive Cancer Reports
    • /
    • v.7 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • The early detection of early gastric cancer (EGC) is important. However, the sensitivity of conventional white light imaging (WLI) in detecting EGC had been reported to range only from 77% to 84%. Although the resolution of endoscopes has been remarkably developed, precancerous lesions such as adenomas and microscopic early cancers are difficult to diagnose with general endoscopy. Linked Color Imaging (LCI) magnifies the differences in color for easy detection. Therefore, it produces a bright image from a distance and is performed for screening endoscopy. The 410 nm wavelength of BLI (Blue Light Imaging) helps to detect cancer by showing microstructure and microvessels in the mucosal superficial layer. This review will focus on the utility of Image enhanced endoscopy (IEE) techniques in diagnosis of gastrointestinal cancer.

Intravascular Plugging in Clinical and Experimental Coronary Artery Occlusion and Recanalization (허혈 및 재관류시 관상혈관내 혈전형성에 관한 임상 및 실험적 연구)

  • Kim, Ho-Dirk;Jung, Hye-Lim;Oh, Seung-Hwan;Rah, Bong-Jin
    • Applied Microscopy
    • /
    • v.23 no.1
    • /
    • pp.139-163
    • /
    • 1993
  • Background: It has been well established and is now no longer a controversial issue that ischemia produces a series of inflammatory reactions and the ischemic myocardium cannot survive without adequate restoration of coronary flow, ie, reperfusion. Nevertheless, controversies that intravascular pluggings (IVP) by polymorphonuclear leukocytes (PMNs) or platelets may cause contractile dysfunction in ischemia and even in repefusion still remain. Accordingly, we attempted to examine the intravascular plug fomation as well as the ultrastructural changes in myocytes and microvessels and to determine the relation among them. Methods: 1) Human (n= 10, 39-63 years of age; 3 females and 7 males): left ventricular myocardium (LVM) was biopsied from chronic ischemic heart disease patient during bypass surgery. 2) Calf (Holstein-Friesian species, n=4): Circumflex branch of the left coronary artery (LCx) was occluded (ischemia) for 45 minutes and recanalized (reperfusion) for 3 and 6 hours, respectively and LVMs were biopsied after occlusion and recanalization, respectiverly. 3) Rat (Sprague-Dawley species, n=20): Left coronary artery (LCA) was occluded for 20 minutes and recanalized for an hour as the method described by Selye et al., (1960) and hearts were removed after occlusion and recanalization, respectively. 4) Pig (landrace type, n=7): Anterior ascending branch of the left coronary artery (LAD) was coccluded for 45 minutes and recanalized for 2 hours and LVMs were biopsied after occlusion and recanalization, repectively. All of the LVMs were routinely prepared for transmissiom electron microscopy. Rseults: In human, most of the LVM showed irreversible ultrastructural changes in myocytes and frequent IVPs by PMNs or platelets without any significant correlation with age or sex. In the animal LVM, myocytes showed reversible ultrastructural changes with slight variations in accordance with the species, duration of ischemia and reperfusion or site of biopsy, however, injuries were more severe in the subendocardial myocytes and IVPs by PMNs or platelets were frequently observed. Ultrastructural changes in the myocytes seemed to be gradually improved by recanalization, howerver, IVPs were still observed after recanalization. Conclusion: These results suggest that microvessels are more resistant to ischemic insult than the myocytes themselves and IVP by PMNs and platelets may play an important role to produce ischemic or reperfusion injuries. Thus, it is favorable that angioplasty is preceded by thrombolysis and it is likely that restoration of myocardial function requires relarively long period of time even after recanalization.

  • PDF

Characteristics of Invasive Breast Ductal Carcinoma, NOS, Diagnosed in a Tertiary Institution in the East Coast of Malaysia with a Focus on Tumor Angiogenesis

  • Ch'ng, Ewe Seng;Sharif, Sharifah Emilia Tuan;Jaafar, Hasnan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4445-4452
    • /
    • 2012
  • Background: Prognosis of breast cancer depends on classic pathological factors and also tumor angiogenesis. This study aimed to evaluate the clinicopathological factors of breast cancer in a tertiary centre with a focus on the relationship between tumor angiogenesis and clinicopathological factors. Methods: Clinicopathological data were retrieved from the archived formal pathology reports for surgical specimens diagnosed as invasive ductal carcinoma, NOS. Microvessels were immunohistochemically stained with anti-CD34 antibody and quantified as microvessel density. Results: At least 50% of 94 cases of invasive breast ductal carcinoma in the study were advanced stage. The majority had poor prognosis factors such as tumor size larger than 50mm (48.9%), positive lymph node metastasis (60.6%), and tumor grade III (52.1%). Higher percentages of estrogen and progesterone receptor negative cases were recorded (46.8% and 46.8% respectively). Her-2 overexpression cases and triple negative breast cancers constituted 24.5% and 22.3% respectively. Significantly higher microvessel density was observed in the younger patient age group (p=0.012). There were no significant associations between microvessel density and other clinicopathological factors (p>0.05). Conclusions: Majority of the breast cancer patients of this institution had advanced stage disease with poorer prognostic factors as compared to other local and western studies. Breast cancer in younger patients might be more proangiogenic.

Red Blood Cell Velocity Field in Rat Mesenteric Arterioles Using Micro PIV Technique

  • Sugii, Y;Nishio, S;Okamoto, K;Nakano, A;Minamiyama, M;Niimi, H
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • As endothelial cells are subject to flow shear stress, it is important to determine the detailed velocity distribution in microvessels in the study of mechanical interactions between blood and endothelium. This paper describes a velocity field of the arteriole in the rat mesentery using an intravital microscope and high-speed digital video system obtained by a highly accurate PIV technique. Red blood cells (RBCs) velocity distributions with spatial resolutions of $0.8{\times}0.8{\mu}m$ were obtained even near the wall in the center plane of the arteriole. By making ensemble-averaged time-series of velocity distributions, velocity profiles over different cross-sections were calculated for comparison. The shear rate at the vascular wall also evaluated on the basis of the ensemble-averaged profiles. It was shown that the velocity profiles were blunt in the center region of the vessel cross-section while they were steep in the near wall region. The wall shear rates were significantly small, compared with those estimated from the Poiseuille profiles.

  • PDF

Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • v.32 no.3
    • /
    • pp.103-115
    • /
    • 2014
  • To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways

  • Kim, Gi Dae
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2015
  • Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and $100{\mu}M$) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.

Combination stem cell therapy using dental pulp stem cells and human umbilical vein endothelial cells for critical hindlimb ischemia

  • Kim, Chung Kwon;Hwang, Ji-Yoon;Hong, Tae Hee;Lee, Du Man;Lee, Kyunghoon;Nam, Hyun;Joo, Kyeung Min
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.336-341
    • /
    • 2022
  • Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.

Effects of Electrical Stimulation on Wound Healing and Skin Mast Cells in Streptozotocin-Induced Diabetic Rats (스트렙토조토신 유도 당뇨 흰쥐에서 전기자극이 상처치유와 피부 비만세포에 미치는 영향)

  • Jekal, Seung-Joo;Lee, Kyung-Sun;Chung, Ok-Bong;Lee, Jae-Hyoung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2008
  • The aim of this study was to investigate the effect of electrical stimulation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Thirty male Sprague-Dawley rats were divided into three groups : incision (control), diabetes+incision (diabetes) and diabetes + incision + electrical stimulation (D/ES). Diabetes was induced in rats by streptozotocin (STZ) injection (60 mg/kg, one time) and 20 mm length incision wounds were created on the back after shaving hair. The electrical stimulation rats were treated with a current intensity of 30~50 V at 120 pps and $140{\mu}s$ for 10 days from 3 days after STZ injection. The lesion and adjacent skin tissues were fixed with 10% buffered formalin, embedded with paraffin. For wound healing analysis, hematoxylin-eosin (HE) and picrosirius red staining were performed. Mast cells (MC) were stained with toluidine blue (pH 0.5) and quantified at ${\times}200$ using a light microscope. The density of keratinocyte proliferation and microvessels in skin tissues were analyzed using a computerized image analysis system on sections immunostained with proliferative cell nuclear antigen (PCNA) and ${\alpha}$-smooth muscle actin (${\alpha}$-SMA), respectively. The results showed that the wound healing rate, collagen density and neoepidermis thickness, density of PCNA-positive cells and density of ${\alpha}$-SMA-positive vessels were significantly higher in D/ES rats than in diabetic rats. The density of MCs and degranulated MCs in D/ES rats were also significantly higher than those in diabetic rats. These findings suggest that the electrical stimulation may promote the tissue repair process by accelerating collagen production, keratinocyte proliferation and angiogenesis in the diabetic rats, and MCs are required for wound healing of skin in rats.

  • PDF