DOI QR코드

DOI QR Code

Combination stem cell therapy using dental pulp stem cells and human umbilical vein endothelial cells for critical hindlimb ischemia

  • Kim, Chung Kwon (Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University) ;
  • Hwang, Ji-Yoon (Medical Innovation Technology Inc. (MEDINNO Inc.)) ;
  • Hong, Tae Hee (Medical Innovation Technology Inc. (MEDINNO Inc.)) ;
  • Lee, Du Man (Medical Innovation Technology Inc. (MEDINNO Inc.)) ;
  • Lee, Kyunghoon (Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University) ;
  • Nam, Hyun (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Joo, Kyeung Min (Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University)
  • Received : 2022.01.06
  • Accepted : 2022.02.11
  • Published : 2022.07.31

Abstract

Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.

Keywords

Acknowledgement

This research was funded by the National Research Foundation (NRF-2016R1A5A2945889, NRF-2019R1I1A1A01059158, and NRF-2020R1F1A1073261) and Korea Basic Science Institute (2020R1A6C101A191).

References

  1. Sprengers RW, Moll FL and Verhaar MC (2010) Stem cell therapy in PAD. Eur J Vasc Endovasc Surg 39 Suppl 1, S38-S43 https://doi.org/10.1016/j.ejvs.2009.12.001
  2. Johannesson A, Larsson GU, Ramstrand N, Turkiewicz A, Wirehn AB and Atroshi I (2009) Incidence of lower-limb amputation in the diabetic and nondiabetic general population: a 10-year population-based cohort study of initial unilateral and contralateral amputations and reamputations. Diabetes Care 32, 275-280 https://doi.org/10.2337/dc08-1639
  3. Adam DJ, Beard JD, Cleveland T et al (2005) Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366, 1925-1934 https://doi.org/10.1016/S0140-6736(05)67704-5
  4. Farber A, Rosenfield K and Menard M (2014) The BESTCLI trial: a multidisciplinary effort to assess which therapy is best for patients with critical limb ischemia. Tech Vasc Interv Radiol 17, 221-224 https://doi.org/10.1053/j.tvir.2014.08.012
  5. Kechagias A, Ylonen K, Kechagias G, Juvonen T and Biancari F (2012) Limits of infrainguinal bypass surgery for critical leg ischemia in high-risk patients (Finnvasc score 3-4). Ann Vasc Surg 26, 213-218 https://doi.org/10.1016/j.avsg.2011.03.018
  6. Buckley RH (2004) A historical review of bone marrow transplantation for immunodeficiencies. J Allergy Clin Immunol 113, 793-800 https://doi.org/10.1016/j.jaci.2004.01.764
  7. Martin I, De Boer J, Sensebe L and Therapy MSCCotISfC (2016) A relativity concept in mesenchymal stromal cell manufacturing. Cytotherapy 18, 613-620 https://doi.org/10.1016/j.jcyt.2016.02.004
  8. Al-Khaldi A, Al-Sabti H, Galipeau J and Lachapelle K (2003) Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 75, 204-209 https://doi.org/10.1016/S0003-4975(02)04291-1
  9. Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P et al (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 23, 2694-2700 https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011
  10. Gupta PK, Chullikana A, Parakh R et al (2013) A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med 11, 143 https://doi.org/10.1186/1479-5876-11-143
  11. Vittorio O, Jacchetti E, Pacini S and Cecchini M (2013) Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol (Camb) 5, 291-299 https://doi.org/10.1039/C2IB20152F
  12. Choi M, Lee HS, Naidansaren P et al (2013) Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 45, 560-570 https://doi.org/10.1016/j.biocel.2012.12.001
  13. Hoch AI, Binder BY, Genetos DC and Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One 7, e35579 https://doi.org/10.1371/journal.pone.0035579
  14. Bronckaers A, Hilkens P, Fanton Y et al (2013) Angiogenic properties of human dental pulp stem cells. PLoS One 8, e71104 https://doi.org/10.1371/journal.pone.0071104
  15. Estrela C, Alencar AH, Kitten GT, Vencio EF and Gava E (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22, 91-98 https://doi.org/10.1590/S0103-64402011000200001
  16. Leong WK, Henshall TL, Arthur A et al (2012) Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med 1, 177-187 https://doi.org/10.5966/sctm.2011-0039
  17. Mamidi MK, Pal R, Dey S et al (2012) Cell therapy in critical limb ischemia: current developments and future progress. Cytotherapy 14, 902-916 https://doi.org/10.3109/14653249.2012.693156
  18. Sakai K, Yamamoto A, Matsubara K et al (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122, 80-90 https://doi.org/10.1172/JCI59251
  19. Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L and Tong EHJJoe (2012) Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. 38, 454-463 https://doi.org/10.1016/j.joen.2011.12.024
  20. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP and Zhang CJTEPA (2015) The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. 21, 550-563 https://doi.org/10.1089/ten.tea.2014.0154
  21. Zhang Y, Liu J, Zou T et al (2021) DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Res Ther 12, 281 https://doi.org/10.1186/s13287-021-02349-y
  22. Volponi AA, Pang Y and Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20, 715-722 https://doi.org/10.1016/j.tcb.2010.09.012
  23. Nam H, Kim GH, Bae YK et al (2017) Angiogenic capacity of dental pulp stem cell regulated by SDF-1alpha-CXCR4 axis. Stem Cells Int 2017, 8085462 https://doi.org/10.1155/2017/8085462
  24. Gupta NK, Armstrong EJ and Parikh SA (2014) The current state of stem cell therapy for peripheral artery disease. Curr Cardiol Rep 16, 447 https://doi.org/10.1007/s11886-013-0447-2
  25. Liew A and O'Brien T (2012) Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 3, 28 https://doi.org/10.1186/scrt119
  26. Bak S, Ahmad T, Lee YB, Lee JY, Kim EM and Shin H (2016) Delivery of a cell patch of cocultured endothelial cells and smooth muscle cells using thermoresponsive hydrogels for enhanced angiogenesis. Tissue Eng Part A 22, 182-193 https://doi.org/10.1089/ten.tea.2015.0124
  27. Ban DX, Ning GZ, Feng SQ et al (2011) Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Regen Med 6, 707-720 https://doi.org/10.2217/rme.11.32
  28. Shi S and Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18, 696-704 https://doi.org/10.1359/jbmr.2003.18.4.696
  29. Crisan M, Corselli M, Chen WC and Peault B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16, 2851-2860 https://doi.org/10.1111/j.1582-4934.2012.01617.x
  30. Lee KH, Pyeon HJ, Nam H et al (2018) Significant therapeutic effects of adult human multipotent neural cells on spinal cord injury. Stem Cell Res 31, 71-78 https://doi.org/10.1016/j.scr.2018.07.006
  31. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP and Zhang C (2015) The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 21, 550-563 https://doi.org/10.1089/ten.tea.2014.0154
  32. Van Tongeren RB, Hamming JF, Fibbe WE et al (2008) Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg (Torino) 49, 51-58
  33. Reagan-Shaw S, Nihal M and Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22, 659-661 https://doi.org/10.1096/fj.07-9574lsf
  34. Flugelman MY, Halak M, Yoffe B et al (2017) Phase Ib safety, two-dose study of MultiGeneAngio in patients with chronic critical limb ischemia. Mol Ther 25, 816-825 https://doi.org/10.1016/j.ymthe.2016.12.019
  35. Lucitti JL, Mackey JK, Morrison JC, Haigh JJ, Adams RH and Faber JE (2012) Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metalloprotease family members 10 and 17. Circ Res 111, 1539-1550 https://doi.org/10.1161/CIRCRESAHA.112.279109
  36. Griffin M, Greiser U, Barry F, O'Brien T and Ritter T (2010) Genetically modified mesenchymal stem cells and their clinical potential in acute cardiovascular disease. Discov Med 9, 219-223
  37. Tateishi-Yuyama E, Matsubara H, Murohara T et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360, 427-435 https://doi.org/10.1016/S0140-6736(02)09670-8
  38. Jang S, Collin de l'Hortet A and Soto-Gutierrez A (2019) Induced pluripotent stem cell-derived endothelial cells: overview, current advances, applications, and future directions. Am J Pathol 189, 502-512 https://doi.org/10.1016/j.ajpath.2018.12.004
  39. Kuroda T, Yasuda S and Sato Y (2013) Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull 36, 189-192 https://doi.org/10.1248/bpb.b12-00970
  40. Ginsberg M, James D, Ding BS et al (2012) Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell 151, 559-575 https://doi.org/10.1016/j.cell.2012.09.032