• Title/Summary/Keyword: Microtubule

Search Result 277, Processing Time 0.035 seconds

Ab ovo or de novo? Mechanisms of Centriole Duplication

  • Loncarek, Jadranka;Khodjakov, Alexey
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.

Regulatory expression and cellular localization of doublecortin in the rat retina following ischemia-reperfusion injury

  • Gwon, Jae-Sung;Chun, Myung-Hoon;Kang, Wha-Sun
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.155-159
    • /
    • 2011
  • Doublecortin (DCX) is microtubule-associated protein and is required for neuronal migration, differentiation and plasticity. In the retina, it is highly expressed between embryonic day 18 (E18) and E20, and is poorly expressed postnatally. In this study, we investigated the expression and cellular localization of DCX in the rat retina following ischemia induced by transiently increasing the intraocular pressure. While DCX immunoreactivity in control retinas was restricted to the outer border of the inner nuclear layer, it appeared in horizontal cell somata and processes in affected retinas. Quantitative evaluation by immunoblotting confirmed that DCX expression continuously increased after ischemia-reperfusion and showed 370% of control protein levels at 4 weeks after ischemic insult. These results suggest that the DCX in horizontal cells might play a role in neurite remodeling or modulating other neurons in ischemic rat retinas.

An effect of UDCA in production of IL -1$\beta$ and NO by Microglia in Rat.

  • Joo, Seong-Soo;Kang, Hee-Chul;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.208.1-208.1
    • /
    • 2003
  • In recent, growing aged people in coupled with the increased senile dementia, Alzheimer's disease, has been a social interests to be cleared out. Alzheimer Disease(AD), first reported by Alios Alzheimer (1864-1915) in 1907, is a neurodegenrative disease. Nothing exact cause of AD is available by now, but in clinical founding ${\beta}$-amyloid peptide(A${\beta}$) and microtubule associated protein($\tau$ protein) is to involved in the disease, and the most important feature in AD is Known to induce chronic inflammation to neuron cell. (omitted)

  • PDF

Role of Spc105p in the maintenance of genome stability

  • Sung, Hye-Ran;Han, Kyung-Cheol;Hong, Jin-Tae;Lee, Chong-Kil;Song, Suk-Gil
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.162.2-162.2
    • /
    • 2003
  • Microtubule-organizing center (MOTC) plays pivotal roles in cell division process. Integrity of the spindle pole body (SPB) in Saccharomyces cerevisiae is required for migration and separation of sister chromatids in mitotic phase. Role of an essential SPB component, Spcl05, is poorly understood. Here we show that throughout all stage of cell division cycle, GFP-tagged Spcl05p localizes at SPB and its protein stability is fluctuated with mitosis-specific modifications. To gain new insights into the function of Spc105, we generated and characterized novel temperature sensitive spc105 mutants. (omitted)

  • PDF

Identification of Novel Salt Stress-responsive Genes Using the Activation Tagging System in Arabidopsis (애기장대에서 activation tagging system을 이용한 새로운 고염 스트레스 반응 유전자의 동정)

  • Seok, Hye-Yeon;Nguyen, Linh Vu;Bae, Hyoungjoon;Ha, Jimin;Kim, Ha Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1030-1041
    • /
    • 2018
  • Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A (Ras-GTPase-activating protein SH3 domain-binding proteins 2, G3BP2와 KIF5A C-말단 꼬리 영역과의 결합)

  • Jeong, Young Joo;Jang, Won Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1191-1198
    • /
    • 2017
  • Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.

The Carboxyl-terminal Tail of a Heterotrimeric Kinesin 2 Motor Subunit Directly Binds to β2-tubulin (Heterotrimeric Kinesin 2 모터 단백질의 Carboxyl-말단과 β2-tubulin의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.369-375
    • /
    • 2019
  • Microtubules form through the polymerization of ${\alpha}-$ and ${\beta}-tubulin$, and tubulin transport plays an important role in defining the rate of microtubule growth inside cellular appendages, such as the cilia and flagella. Heterotrimeric kinesin 2 is a molecular motor member of the kinesin superfamily (KIF) that moves along the microtubules to transport multiple cargoes. It consists of two motor subunits (KIF3A and KIF3B) and a kinesin-associated protein 3 (KAP3), forming a heterotrimeric complex. Heterotrimeric kinesin 2 interacts with many different binding proteins through the cargo-binding domains of the KIF3s, but these binding proteins have not yet been specified. To identify these proteins for KIF3A, we performed yeast two-hybrid (Y2H) screening and found a specific interaction with ${\beta}2-tubulin$ (Tubb2), a microtubule component. Tubb2 was found to bind to the cargo-binding domain of KIF3A but did not interact with KIF3B, KIF5B, or kinesin light chain 1 in the Y2H assay. The carboxyl-terminal region of Tubb2 is essential for interaction with KIF3A. Other Tubb isoforms, including Tubb1, Tubb3, Tubb4, and Tubb5, also interacted with KIF3A in the Y2H screening. However, ${\alpha}1-tubulin$ (Tuba1) did not interact with KIF3A. In addition, an antibody to KIF3A specifically co-immunoprecipitated the KIF3B and KAP3 associated with Tubb2 from mouse brain extracts. In combination, these results suggest that a heterotrimeric kinesin 2 motor protein is capable of binding to tubulin and may transport it in cells.

Ultrastructural Study of Germ Cell Development and Reproductive Cycle of the Hen Clam, Mactra chinensis on the West Coast of Korea (한국 서해산 개량조개, Mactra chinensis의 생식세포발달의 미세구조적 연구 및 생식주기)

  • Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.141-156
    • /
    • 1997
  • 1992년 1월부터 12월까지 1년간에 걸쳐 전북 군산, 선연리 조하애에서 채집된 개량조개, Mactra chinensis Philippi를 대상으로 생식세포 발달과 생식소 발달양상을 조사하기 위해 토과형 전자현미경으로 미세구조 변활르 관찰하였고, 정확한 산란기를 규명하기 위해 조직학적으로 생식주기를 조사하였다. 개량조개는 장웅이체이다. 난황형성과정은 난모세포의 발달정도에 따라 다르게 나타나고 있다. 전난황형성기 난모세포질 내에서는 핵주변 구여게 골지장치와 수많은 공포들 및 미토콘드리아들이 출현하고 있는데 이들은 차후, 지방적 형성에 관여한다. 난황형성전기 난모세포에서는 지방적 및 지질과립들이 핵막 근처에서 출현하여 피질층쪽으로 분산되는 반면, 같은 발달단계의 난모세포질의 피질구역에서는 피질과립들 (단백질성 난황과립)이 처음으로 생성되어 난황막 근처의 피질층에서 핵주변 구역쪽으로 분산 분포된다. 난황형성후기 난모세포에서는 세포질 내의 골지장치, 공포, 미토콘드리아, 그리고 조면소포체들이 자율합성에 의해 난황과립 형성에 관영하고 있다. 반면, 외인성 물질들인 지질형태의 과립들, 단백질성 물질 및 다량의 글리코겐 입자들이 생식상피 낸에서 출현하고 있는데, 이들 물질이 생식상피에서 난황막 구조물인 미세융모를 통해 난황형성 후기 난모세포의 난질 내로 통과해 들어가는 현상이 관찰되었다. 이와 같은 현상은 난황성성이 일어날 때에 hterosynthesis가 일어나고 있음을 시사한다. 완숙난모세포의 난경은 약 50-60 \mu m이고, 완숙정자 두부의 길이는 대략 3 \mu m이며, 미부의 길이는 약 30 \mu m정도이다. 정자 미부편모의 axoneme은 중앙의 2개의 미세소관(microtubule)과 주변에 위치한 9개의 2중 미세소관 (microtubule)으로 구성되어 있다. 본 종의 산란기는 5월에서 9월 중순에 걸쳐 일어나는데, 주산란시기는 해수수온이 22 \circ C 이상으로 상승하는 6, 7월이다. 따라서 1년에 산란 (번식)시기가 한번 일어나고 있음을 알 수 있다. 생식 주기는 초기활성기 (1-2월), 후기활성기 (2-4월), 완숙기 (4-9월), 산란기 (5-9월) 그리고 퇴화 및 비솰성기 (6-12월)의 연속적인 5단계로 구분할 수 있었다. 재생산에 가담할 수 있는 암, 수개체들의 군성숙도(%)를 조직학적으로 조사한 결과, 각장 3.5-3.9cm 범위의 개체는 55.5%이었고, 5cm 이사인 개체들은 재생산에 100% 참여하였다. 본 종의 암, 수개체들은 만 1년부터 재생산에 가담하는 것으로 추정된다.

  • PDF

Involvement of ROS in Curcumin-induced Autophagic Cell Death

  • Lee, Youn-Ju;Kim, Nam-Yi;Suh, Young-Ah;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 112 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell. However, ROS-dependent activation of ERK1/2 and p38 MAPK, but not JNK, might not be involved in the curcumin-induced autophagy.

Mad1p, a Component of the Spindle Assembly Checkpoint in Fission Yeast, Suppresses a Novel Septation-defective Mutant, sun1, in a Cell Division Cycle

  • Kim In G.;Rhee Dong K.;Jeong Jae W.;Kim Seong C.;Won Mi S.;Song Ki W.;Kim Hyong B.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.162-172
    • /
    • 2002
  • Schizosaccharomyces pombe is suited for the study of cytokinesis as it divides by forming a septum in the middle of the cell at the end of mitosis. To enhance our understanding of the cytokinesis, we have carried out a genetic screen for temperature-sensitive S. pombe mutants that show defects in septum formation and cell division. Here we present the isolation and characterization of a new temperature-sensitive mutant, sun1(septum uncontrolled), which undergoes uncontrolled septation during cell division cycle at restrictive temperature $(37^{\circ}C)$. In sun1 mutant, actin ring and septum are positioned at random locations and angles, and nuclear division cycle continues. These observations suggest that the sun] gene product is required for the proper placement of the actin ring as well as precise septation. The sun] mutant is monogenic recessive mutation unlinked to previously known various cdc genes of S. pombe. In a screen for $sunl^+$ gene to complement the sun] mutant, we have cloned a gene, $susl^+$(suppressor of sun1 mutant), that encodes a protein of 689 amino acids. The predicted amino acid sequence of $susl^+$ gene is similar to the human hMadlp and Saccharomyces cerevisiae Mad1p, a component of the spindle checkpoint in eukaryotic cells. The null mutant of $susl^+$ gene grows normally at various temperatures and has the increased sensitivity to anti-microtubule drug, while $susl^+$ mutant shows no sensitivity to microtubule destabilizing drugs. The putative S. pombe Sus1p directly interacts with S. pombe Mad2p in yeast two-hybrid assays. These data suggest that the newly isolated susr gene encodes S. pombe Mad1p and suppresses sun] mutant defective in controlled septation in a cell division cycle.

  • PDF