DOI QR코드

DOI QR Code

Ab ovo or de novo? Mechanisms of Centriole Duplication

  • Loncarek, Jadranka (Division of Translational Medicine, Wadsworth Center, New York State Department of Health) ;
  • Khodjakov, Alexey (Division of Translational Medicine, Wadsworth Center, New York State Department of Health)
  • Received : 2008.12.22
  • Accepted : 2008.12.26
  • Published : 2009.02.28

Abstract

The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.

Keywords

References

  1. Alvey, P.L. (1985). An investigation of the centriole cycle using 3T3 and CHO cells. J. Cell Sci. 78, 147-162
  2. Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., and Brinkley, B.R. (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105-115 https://doi.org/10.1083/jcb.130.1.105
  3. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003). Cdk2 Knockout mice are viable. Curr. Biol. 13, 1775-1785 https://doi.org/10.1016/j.cub.2003.09.024
  4. Bettencourt-Dias, M., and Carvalho-Santos, Z. (2008). Double life of centrioles: CP110 in the spotlight. Trends. Cell Biol. 18, 8-11 https://doi.org/10.1016/j.tcb.2007.11.002
  5. Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). Sak/Plk4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207 https://doi.org/10.1016/j.cub.2005.11.042
  6. Bisgrove, B.W., and Yost, H.J. (2006). The roles of cilia in developmental disorders and disease. Development 133, 4131-4143 https://doi.org/10.1242/dev.02595
  7. Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476-486 https://doi.org/10.1038/nrm1663
  8. Bobinnec, Y., Khodjakov, A., Mir, L.M., Rieder, C.L., Edde, B., and Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589 https://doi.org/10.1083/jcb.143.6.1575
  9. Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, a cell cycle-dependent Cdk substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339-350 https://doi.org/10.1016/S1534-5807(02)00258-7
  10. Chretien, D., Buendia, B., Fuller, S.D., and Karsenti, E. (1997). Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117-133 https://doi.org/10.1006/jsbi.1997.3928
  11. Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., and Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815-829 https://doi.org/10.1016/j.devcel.2004.10.015
  12. Dammermann, A., Maddox, P.S., Desai, A., and Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the $\gamma$-tubulin-mediated addition of centriolar microtubules. J. Cell Biol. 180, 771-785 https://doi.org/10.1083/jcb.200709102
  13. Dawe, H.R., Farr, H., and Gull, K. (2007). Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci 120, 7-15 https://doi.org/10.1242/jcs.03305
  14. Delattre, M., and Gonczy, P. (2004). The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619-1630 https://doi.org/10.1242/jcs.01128
  15. Delattre, M., Canard, C., and Gonczy, P. (2006). Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844-1849 https://doi.org/10.1016/j.cub.2006.07.059
  16. Dippell, R. (1968). The development of basal bodies in Paramecium. Proc. Natl. Acad. Sci. USA 61, 461-468 https://doi.org/10.1073/pnas.61.2.461
  17. Dirksen, E.R. (1991). Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72, 31-38 https://doi.org/10.1016/0248-4900(91)90075-X
  18. Dix, C.I., and Raff, J.W. (2007). Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr. Biol. 17, 1759-1764 https://doi.org/10.1016/j.cub.2007.08.065
  19. Duensing, S., and Munger, K. (2003). Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77, 12331-12335 https://doi.org/10.1128/JVI.77.22.12331-12335.2003
  20. Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S. (2007). Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26, 6280-6288 https://doi.org/10.1038/sj.onc.1210456
  21. Dutcher, S.K. (2007). Finding treasures in frozen cells: new centriole intermediates. Bioessays 29, 630-634 https://doi.org/10.1002/bies.20594
  22. Fisk, H.A., and Winey, M. (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106, 95-104 https://doi.org/10.1016/S0092-8674(01)00411-1
  23. Fisk, H.A., Mattison, C.P., and Winey, M. (2003). Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc. Natl. Acad. Sci. USA 100, 14875-14880 https://doi.org/10.1073/pnas.2434156100
  24. Fuller, S.D., Gowen, B.E., Reinsch, S., Sawyer, A., Buendia, B., Wepf, R., and Karsenti, E. (1995). The core of the mammalian centriole contains $\gamma$-tubulin. Curr. Biol. 5, 1384-1393 https://doi.org/10.1016/S0960-9822(95)00276-4
  25. Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J.E., Bhattacharya, S., Rideout, W.M., Bronson, R.T., Gardner, H., and Sicinski, P. (2003). Cyclin E ablation in the mouse. Cell 114, 431-443 https://doi.org/10.1016/S0092-8674(03)00645-7
  26. Hinchcliffe, E.H., and Sluder, G. (2001a). It takes two to tango: understanding how centrosome duplication is regulated through-hout the cell cycle. Genes Dev. 15, 1167-1181 https://doi.org/10.1101/gad.894001
  27. Hinchcliffe, E.H., and Sluder, G. (2001b). Centrosome duplication: Three kinases come up a winner! Curr. Biol. 11, R698-R701 https://doi.org/10.1016/S0960-9822(01)00412-2
  28. Hiraki, M., Nakazawa, Y., Kamiya, R., and Hirono, M. (2007). Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17, 1778-1783 https://doi.org/10.1016/j.cub.2007.09.021
  29. Hook, S.S., Lin, J.J., and Dutta, A. (2007). Mechanisms to control re-replication and implications for cancer. Curr. Opin. Cell Biol. 19, 663-671 https://doi.org/10.1016/j.ceb.2007.10.007
  30. Jones, M.H., and Winey, M. (2006). Centrosome duplication: is asymmetry the clue? Curr. Biol. 16, R808-810 https://doi.org/10.1016/j.cub.2006.08.041
  31. Kasbek, C., Yang, C.H., Yusof, A.M., Chapman, H.M., Winey, M., and Fisk, H.A. (2007). Preventing the degradation of Mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol. Biol. Cell 18, 4457-4469 https://doi.org/10.1091/mbc.E07-03-0283
  32. Kemp, C.A., Kopish, K.R., Zipperlen, P., Ahringer, J., and O'Connell, K.F. (2004). Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511-523 https://doi.org/10.1016/S1534-5807(04)00066-8
  33. Keryer, G., Ris, H., and Borisy, G.G. (1984). Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J. Cell Biol. 98, 2222-2229 https://doi.org/10.1083/jcb.98.6.2222
  34. Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., and Wang, C.L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171-1181 https://doi.org/10.1083/jcb.200205102
  35. Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., and Hyman, A. A. (2003). SAS-4 Is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575-587 https://doi.org/10.1016/S0092-8674(03)00117-X
  36. Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y.D., and Nigg, E.A. (2007). Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190-202 https://doi.org/10.1016/j.devcel.2007.07.002
  37. Kuriyama, R., and Borisy, G.G. (1981). Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814-821 https://doi.org/10.1083/jcb.91.3.814
  38. Kuriyama, R., and Borisy, G.G. (1983). Cytasters induced within unfertilized sea-urchin eggs. J. Cell Sci. 61, 175-189
  39. La Terra, S., English, C.N., Hergert, P., McEwen, B.F., Sluder, G., and Khodjakov, A. (2005). The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713-722 https://doi.org/10.1083/jcb.200411126
  40. Leidel, S., Delattre, M., Cerutti, L., Baumer, K., and Gonczy, P. (2005). SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7, 115-125 https://doi.org/10.1038/ncb1220
  41. Loncarek, J., Hergert, P., Magidson, V., and Khodjakov, A. (2008). Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322-328 https://doi.org/10.1038/ncb1694
  42. Mahowald, A.P., Caulton, J.H., Edwards, M.K., and Floyd, A.D. (1979). Loss of centrioles and polyploidization in follicle cells of Drosophila melanogaster. Exp. Cell Res. 118, 404-410 https://doi.org/10.1016/0014-4827(79)90167-8
  43. Manandhar, G., Schatten, H., and Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2-13 https://doi.org/10.1095/biolreprod.104.031245
  44. Marshall, W.F. (2007). Centriole assembly: the origin of nine-ness. Cur. Biol. 17, R1057-R1059 https://doi.org/10.1016/j.cub.2007.10.038
  45. Marshall, W.F. (2008). The cell biological basis of ciliary disease. J. Cell Biol. 180, 17-21 https://doi.org/10.1083/jcb.200710085
  46. Matsumoto, Y., and Maller, J.L. (2004). A centrosomal localization signal in cyclin E required for cdk2-independent S phase entry. Science 306, 885-888 https://doi.org/10.1126/science.1103544
  47. Matsumoto, Y., Hayashi, K., and Nishida, E. (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429-432 https://doi.org/10.1016/S0960-9822(99)80191-2
  48. Mazia D. (1987). The multiplicity of the mitotic centers and the timecourse of their duplication and separation. Biophys. Biochem. Cytol. 7, 1-20
  49. Meraldi, P., Lukas, J., Fry, A.M., Bartek, J., and Nigg, E.A. (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1, 88-93 https://doi.org/10.1038/10054
  50. Moritz, M., Braunfeld, M.B., Guenebaut, V., Heuser, J., and Agard, D.A. (2000). Structure of the $\gamma$-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365-370 https://doi.org/10.1038/35014058
  51. Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). $\gamma$-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875-887
  52. Nakazawa, Y., Hiraki, M., Kamiya, R., and Hirono, M. (2007). SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169-2174 https://doi.org/10.1016/j.cub.2007.11.046
  53. Nigg, E.A. (2007). Centriole duplication: of rules and licenses. Trends Cell Biol. 17, 215-221 https://doi.org/10.1016/j.tcb.2007.03.003
  54. O' Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., and White, J.G. (2001). The C. elegans Zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558 https://doi.org/10.1016/S0092-8674(01)00338-5
  55. O'Toole, E.T., Giddings, T.H., McIntosh, J.R., and Dutcher, S.K. (2003). Three-dimensional organization of basal bodies from wild-type and $\delta$-tubulin deletion strains of Chlamydomonas reingardtii. Mol. Biol. Cell 14, 2999-3012 https://doi.org/10.1091/mbc.E02-11-0755
  56. Okuda, M., Horn, H.F., Tarapore, P., Tokuyama, Y., Smulian, A.G., Chan, P.K., Knudsen, E.S., Hofmann, I.A., Snyder, J.D., Bove, K.E., et al. (2000). Nucleophosmin/B23 is a target of CDK2/Cyclin E in centrosome duplication. Cell 103, 127-140 https://doi.org/10.1016/S0092-8674(00)00093-3
  57. Peel, N., Stevens, N.R., Basto, R., and Raff, J.W. (2007). Overex-pressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834-843 https://doi.org/10.1016/j.cub.2007.04.036
  58. Pelletier, L., Ozlu, N., Hannak, E., Cowan, C., Habermann, B., Ruer, M., Muller-Reichert, T., and Hyman, A.A. (2004). The Caenor-habditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863-873 https://doi.org/10.1016/j.cub.2004.04.012
  59. Pelletier, L., Toole, E., Schwager, A., Hyman, A.A., and Muller-Reichert, T. (2006). Centriole assembly in Caenorhabditis elegans. Nature 444, 619-623 https://doi.org/10.1038/nature05318
  60. Piel, M., Nordberg, J., Euteneuer, U., and Bornens, M. (2001). Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550-1553 https://doi.org/10.1126/science.1057330
  61. Riparbelli, M.G., and Callaini, G. (2003). Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev. Biol. 260, 298-313 https://doi.org/10.1016/S0012-1606(03)00243-4
  62. Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M., and Bettencourt-Dias, M. (2007a). Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046-1050 https://doi.org/10.1126/science.1142950
  63. Rodrigues-Martins, A., Bettencourt-Dias, M.n., Riparbelli, M., Ferreira, C., Ferreira, I., Callaini, G., and Glover, D.M. (2007b). DSAS-6 Organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465-1472 https://doi.org/10.1016/j.cub.2007.07.034
  64. Salisbury, J.L., Suino, K.M., Busby, R., and Springett, M. (2002). Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287-1292 https://doi.org/10.1016/S0960-9822(02)01019-9
  65. Silflow, C.D., Liu, B., LaVoie, M., Richardson, E.A., and Palevitz, B.A. (1999). $\gamma$-Tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil. Cytoskeleton 42, 285-297 https://doi.org/10.1002/(SICI)1097-0169(1999)42:4<285::AID-CM3>3.0.CO;2-Z
  66. Sluder, G., and Begg, D.A. (1985). Experimental analysis of the reproduction of spindle poles. J. Cell Sci. 76, 35-51
  67. Sorokin, S.P. (1968). Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207-230
  68. Spektor, A., Tsang, W.Y., Khoo, D., and Dynlacht, B.D. (2007). Cep97 and CP110 Suppress a cilia assembly program. Cell 130, 678-690 https://doi.org/10.1016/j.cell.2007.06.027
  69. Strnad, P., and Gonczy, P. (2008). Mechanisms of procentriole formation. Trends. Cell Biol. 18, 389-396 https://doi.org/10.1016/j.tcb.2008.06.004
  70. Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A., and Gonczy, P. (2007). Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203-213 https://doi.org/10.1016/j.devcel.2007.07.004
  71. Stucke, V.M., Sillje, H.H., Arnaud, L., and Nigg, E.A. (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723-1732 https://doi.org/10.1093/emboj/21.7.1723
  72. Szollosy, D., Calarco, P., and Donahue, R.P. (1972). Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521-541
  73. Szollosi, D., and Ozil, J.P. (1991). De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol. Cell 72, 61-66 https://doi.org/10.1016/0248-4900(91)90079-3
  74. Tokuyama, Y., Horn, H.F., Kawamura, K., Tarapore, P., and Fukasawa, K. (2001). Specific phosphorylation of nucleo-phosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529-21537 https://doi.org/10.1074/jbc.M100014200
  75. Tsou, M.F.B., and Stearns, T. (2006a). Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74-78 https://doi.org/10.1016/j.ceb.2005.12.008
  76. Tsou, M.F.B., and Stearns, T. (2006b). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947-951 https://doi.org/10.1038/nature04985
  77. Uetake, Y., Loncarek, J., Nordberg, J.J., English, C.N., La Terra, S., Khodjakov, A., and Sluder, G. (2007). Cell cycle progression and do novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176, 173-182 https://doi.org/10.1083/jcb.200607073
  78. Vladar, E.K., and Stearns, T. (2007). Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31-42 https://doi.org/10.1083/jcb.200703064
  79. Vorobjev, I.A., and Chentsov, Y. (1982). Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938-949 https://doi.org/10.1083/jcb.93.3.938
  80. Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). Mps1 and Mps2: novel yeast genes defining distinct steps of spindle pole body duplication. J. Cell Biol. 114, 745-754 https://doi.org/10.1083/jcb.114.4.745
  81. Winkles, J.A., and Alberts, G.F. (2005). Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24, 260-266 https://doi.org/10.1038/sj.onc.1208219
  82. Wong, C., and Stearns, T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5, 539-544 https://doi.org/10.1038/ncb993
  83. Young, A., Dictenberg, J.B., Purohit, A., Tuft, R., and Doxsey, S.J. (2000). Cytoplasmic dynein-mediated assembly of pericentrin and $\gamma$-tubulin onto centrosomes. Mol. Biol. Cell 11, 2047-2056 https://doi.org/10.1091/mbc.11.6.2047
  84. Zhu, F., Lawo, S., Bird, A., Pinchev, D., Ralph, A., Richter, C., Muller-Reichert, T., Kittler, R., Hyman, A.A., and Pelletier, L. (2008). The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136-141 https://doi.org/10.1016/j.cub.2007.12.055

Cited by

  1. Centrobin/Nip2 expression in vivo suggests its involvement in cell proliferation vol.28, pp.1, 2009, https://doi.org/10.1007/s10059-009-0097-9
  2. Centrioles, Centrosomes, and Cilia in Health and Disease vol.139, pp.4, 2009, https://doi.org/10.1016/j.cell.2009.10.036
  3. Centriole symmetry: A big tale from small organisms vol.66, pp.12, 2009, https://doi.org/10.1002/cm.20417
  4. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability vol.188, pp.2, 2009, https://doi.org/10.1083/jcb.200911102
  5. The insect centriole: A land of discovery vol.42, pp.2, 2009, https://doi.org/10.1016/j.tice.2010.01.002
  6. Procentriole assembly revealed by cryo-electron tomography vol.29, pp.9, 2009, https://doi.org/10.1038/emboj.2010.45
  7. SCF Cyclin F controls centrosome homeostasis and mitotic fidelity via CP110 degradation vol.466, pp.7302, 2010, https://doi.org/10.1038/nature09140
  8. Centriole Reduplication during Prolonged Interphase Requires Procentriole Maturation Governed by Plk1 vol.20, pp.14, 2009, https://doi.org/10.1016/j.cub.2010.05.050
  9. Centriole duplication : A lesson in self-control vol.9, pp.14, 2009, https://doi.org/10.4161/cc.9.14.12184
  10. Mps1 Phosphorylation Sites Regulate the Function of Centrin 2 in Centriole Assembly vol.21, pp.24, 2009, https://doi.org/10.1091/mbc.e10-04-0298
  11. Mining the Giardia genome and proteome for conserved and unique basal body proteins vol.41, pp.10, 2009, https://doi.org/10.1016/j.ijpara.2011.06.001
  12. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg vol.142, pp.6, 2009, https://doi.org/10.1530/rep-11-0255
  13. Structural Basis of the 9-Fold Symmetry of Centrioles vol.144, pp.3, 2011, https://doi.org/10.1016/j.cell.2011.01.008
  14. Structures of SAS-6 Suggest Its Organization in Centrioles vol.331, pp.6021, 2009, https://doi.org/10.1126/science.1199325
  15. Identification of a Polo-like Kinase 4-Dependent Pathway for De Novo Centriole Formation vol.21, pp.5, 2009, https://doi.org/10.1016/j.cub.2011.01.072
  16. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication vol.8, pp.2, 2011, https://doi.org/10.1088/1478-3975/8/2/026010
  17. Centrobin–tubulin interaction is required for centriole elongation and stability vol.193, pp.4, 2009, https://doi.org/10.1083/jcb.201006135
  18. Centrosomes, microtubules and neuronal development vol.48, pp.4, 2009, https://doi.org/10.1016/j.mcn.2011.05.004
  19. Modular organization of the mammalian Golgi apparatus vol.24, pp.4, 2009, https://doi.org/10.1016/j.ceb.2012.05.009
  20. Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis vol.23, pp.10, 2009, https://doi.org/10.1091/mbc.e11-12-1043
  21. Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy vol.19, pp.8, 2009, https://doi.org/10.1038/cdd.2012.61
  22. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development vol.198, pp.3, 2009, https://doi.org/10.1083/jcb.201202135
  23. Poc1A and Poc1B act together in human cells to ensure centriole integrity vol.126, pp.1, 2009, https://doi.org/10.1242/jcs.111203
  24. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody vol.30, pp.1, 2009, https://doi.org/10.3803/enm.2015.30.1.53
  25. Centriolar satellite– and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly vol.26, pp.11, 2009, https://doi.org/10.1091/mbc.e14-11-1561
  26. The centrosome: a prospective entrant in cancer therapy vol.19, pp.7, 2009, https://doi.org/10.1517/14728222.2015.1018823
  27. VR23: A Quinoline–Sulfonyl Hybrid Proteasome Inhibitor That Selectively Kills Cancer via Cyclin E–Mediated Centrosome Amplification vol.75, pp.19, 2009, https://doi.org/10.1158/0008-5472.can-14-3370
  28. Achilles’ heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture vol.73, pp.13, 2009, https://doi.org/10.1007/s00018-016-2171-8
  29. CCNE1 Amplification and Centrosome Number Abnormality in Serous Tubal Intraepithelial Carcinoma- Further Evidence Supporting its Role as a Precursor of Ovarian High-Grade Serous Carcinoma vol.29, pp.10, 2016, https://doi.org/10.1038/modpathol.2016.101
  30. A Review of Centriole Activity, and Wrongful Activity, during Cell Division vol.7, pp.3, 2016, https://doi.org/10.4236/abb.2016.73015
  31. Mechanics of Centriole Microtubules vol.7, pp.6, 2009, https://doi.org/10.4236/abb.2016.76025
  32. Analysis of centrosome and DNA damage response in PLK4 associated Seckel syndrome vol.25, pp.10, 2009, https://doi.org/10.1038/ejhg.2017.120
  33. Excess centrosomes induce p53-dependent senescence without DNA damage in endothelial cells vol.31, pp.10, 2009, https://doi.org/10.1096/fj.201601320r
  34. Causes and consequences of chromosome segregation error in preimplantation embryos vol.155, pp.1, 2018, https://doi.org/10.1530/rep-17-0569
  35. Separation and Loss of Centrioles From Primordidal Germ Cells To Mature Oocytes In The Mouse vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-31222-x
  36. The Role of Sperm Centrioles in Human Reproduction - The Known and the Unknown vol.7, pp.None, 2019, https://doi.org/10.3389/fcell.2019.00188
  37. PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation vol.132, pp.4, 2009, https://doi.org/10.1242/jcs.219501
  38. NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation vol.9, pp.3, 2009, https://doi.org/10.3390/cells9030692
  39. The Enigma of Centriole Loss in the 1182-4 Cell Line vol.9, pp.5, 2020, https://doi.org/10.3390/cells9051300
  40. Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development vol.22, pp.2, 2021, https://doi.org/10.15252/embr.202051127