• Title/Summary/Keyword: Microstructure analysis

Search Result 1,495, Processing Time 0.028 seconds

Quality properties of fermented mugworts and the rapid pattern analysis of their volatile flavor components via surface acoustic wave (SAW) based electronic nose sensor in the GC system (발효 인진쑥과 약쑥의 이화학적 품질특성 및 GC와 SAW센서기반 electronic nose에 의한 향기패턴의 신속분석)

  • Song, Hyo-Nam
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.554-563
    • /
    • 2013
  • The changes in quality properties and nutritional components for two mugworts, namely, Artemisia capillaris Thumberg Artemisiae asiaticae Nakai fermented by Bacillus strains were characterized followed by rapid pattern analysis of volatile flavor compounds through the SAW-based electronic nose sensor in the GC system. After fermentation, the pH has remarkably decreased from 6.0~6.4 to 4.6~5.1 and there has been a slight change in the total soluble solids. The L (lightness) and b (yellowness) values in the Hunter's color system significantly decreased, whilst the a (redness) value increased via fermentation. The HPLC analysis demonstrated that the total amino acids increased in quantity and the essential amino acids were higher in the A. asiaticae Nakai than in the A. capillaris Thumberg, specially with high contents of glutamic and aspartic acid. After fermentation, the monounsaturated fatty acid increased in the A. asiaticae Nakai and the polyunsaturated fatty acids increased in the A. capillaris Thumberg. While the total polyphenol contents have not been affected by fermentation, the total sugar contents have dramatically decreased. Scopoletin, which is one of the most important index components in mugworts, was highly abundant in the A. capillaris Thumberg; however, it was not detected in the A. asiaticae Nakai. Small pieces of plant tissue in the surface microstructure were found in the fermented mugworts through the use of the scanning electron microscope (SEM). Volatile flavor compounds via electronic nose showed that the intensity of several peaks has increased and additional seven flavor peaks have been produced after fermentation. The VaporPrintTM images demonstrated a notable difference in flavors between the A. asiaticae Nakai and A. capillaris Thumberg, and the fermentation enabled the mugworts to produce subtle differences in flavor.

A Study on Production Kiln Site Estimation, based on Historical Ceramic Characteristics and Scientific Analysis of the Celadons Excavated From the Beopcheon Temple Site and Son-gok 2-ri 4th Kiln Site (법천사지 청자와 손곡2리 4호 가마터 청자의 도자사적 성격과 과학적 분석을 통한 생산 가마터 추정 연구)

  • Lee, Byeong-hoon;Yun, Seok-in
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.3
    • /
    • pp.24-41
    • /
    • 2014
  • Since the celadons excavated from the Son-gok 2-ri 4th kiln site are located in the Beopcheon temple site and at close range, the similarity to the celadons excavated from the Beopcheon temple site is being raised. Thus, this study examined the correlation using a natural-scientific method. In this study, historical ceramic properties of total 19 celadons were examined and they were scientifically analyzed. First of all, according to the scientific analysis, chemical compositions of celadon clay showed a dispersed distribution at RO2 3.79-7.77mole and RO+R2O 0.33-0.49mole. When the microstructure was analyzed, most celadons excavated from the Beopcheon temple site, Wonju, which are estimated to be used in real life, had a favorable state, and some celadons from the Son-gok 2-ri 4th kiln site were found not to be glazed and sintered properly. When analyzing body crystalline phases of the celadons using the XRD method, quartz and mullite were extracted from all of the samples. And corundum was extracted from sg4 sample. Though firing temperature of each sample was different, they were mostly fired to temperatures between 1150 and $1200^{\circ}C$ and some of them experienced a low temperature of $1100^{\circ}C$ or a high temperature above $1200^{\circ}C$. Various chemical compositions and producing techniques were observed in the celadons from the Beopcheon temple site and Son-gok 2-ri 4th kiln site and it is hard to assure that the Son-gok 2-ri 4th kiln site was the production kiln site of the celadons used in the Beopcheon temple site. But according to the analysis of rare earth elements, some of the celadons from the Beopcheon temple site and Son-gok 2-ri 4th kiln site displayed a distribution pattern with certain regularity and this implies there is a possibility that the raw materials used in producing the ceramics might have come from the same origin. From the perspective of ceramic history, the celadons excavated from the Beopcheon temple site and Son-gok 2-ri 4th kiln site were produced using the same molding and sintering technique. Also, it is estimated that they were produced in the 12th or 13th century, judging from the overall shapes and patterns of the celadons.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Taxonomic Characteristics of Korean-native Anacardiaceae (한국산(韓國産) 옻나무과(科)의 분류학적(分類學的) 연구(硏究))

  • Kim, Sam Sik;Chung, Jae Min
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.151-165
    • /
    • 1995
  • This study was conducted to establish a systematized taxonomic problems of through the leaf morphological characters and leaf venation patterns, and stomatal cell patterns and cell characteristics of abaxial and adaxial surface of the leaflets by SEM, of 6 native species in Korea and 2 foreign species of the Genus Rhus in the Family Anacardiaceae. The results obtained from this study are summarized as followings: 1. Morphological study measured 32 characters of leaves from herbarium specimen and field-collected samples for each species. The results of cluster analysis based on the Euclidean distance showed that the species could be classified into 3 groups: R. sylvestris. R. typhina, R. succedanea: R. trichocarpa. R. chinensis. R. verniciflua: and R. ambigua. R. radicans subsp. orientale, Analysis of principal components showed 5 groups: The major factors in the first principal component group was length of petiole of the terminal leaflets, that in the second group angle of left side in the terminal leaflet bash, that in the third group area ratio between first and terminal leaflets, that in the forth group angle ratio between right and left side in the terminal leaflet base, and that in the fifth group was angle of main and secondary vein at midrib of terminal leaflet. Cumulative contribution by the first, second and third principal component group was explained with 82.6%, a large percent of all information. 2. The leaf venation pattern investigated using soft X-ray photography revealed clado-and reticulo-camptodromous types according to branching angle of the secondary vein. And three groups by the developing degree of secondary vein were R. trichocarpa, R. ambigua. R. chinensis, R. typhina; R. radicans subsp. onentale, R. succedanea, R. verniciflua: and R. sylvestris. Classification key for the Rhus of Korean-native Anacardiaceae was made by the venation pattern and devevoping degree of the secondary vein. 3. The stomatal cell patterns were greatly classified into paracytic and anomocytic types, specific among species according to stomatal and subsidiary cell patterns, and various differences among the species was determined. Microstructure of the adaxial and abaxial surfaces could be divided into synclinal and anticlinal cell wall patterns, and were specific-species. Stomatal cells of R. chinensis were surrounded with characterized villus-like cells.

  • PDF

Characterization and Conversion Electron Mössbauer Spectroscopy of HoMn1-x-FexO3 Thin Films by Pulsed Laser Deposition (PLD를 이용한 HoMn1-x-FexO3 박막 제조 및 후방 산란형 뫼스바우어 분광 연구)

  • Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • The hexagonal $HoMn_{1-x}-Fe_xO_3$(x=0.00, 0.05) thin films were prepared using pulsed laser deposition(PLD) method on $Pt/Ti/SiO_2/Si$ substrate. The microstructure and magnetic properties have been studied by x-ray diffraction(XRD), atomic force microscopy (AFH), scanning electron microscope(SEM:), x-ray photoelectron spectroscopy(XPS), and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). From the analysis of the x-ray diffraction patterns, the crystal structure for all films was found to be a hexagonal($P6_3cm$), which was preferentially grown along(110) direction. The lattice constant $c_0$ of the film with x=0.05 was close to that of single crystal, whereas lattice constant $a_0$ with respect to single crystal shows a slight decrease. This difference of lattice parameters between film and single crystal was caused by the lattice mismatch between the film and $Pt/Ti/SiO_2/Si$ substrate. Conversion electron $M\"{o}ssbauer$ spectrum of $HoMn_{0.95}Fe_{0.05}O_3$ thin film shows an asymmetry doublet absorption ratio at room temperature, which is due to the oriented direction of crystallographic domains. This is corresponding with analysis of x-ray diffraction. The quadrupole splitting(${\Delta}E_Q$) at room temperature is found to be $1.62{\pm}0.01mm/s$. This large ${\Delta}E_Q$ was caused by asymmetry environment surrounding Fe ion.

Study on the Manufacturing techniques & Conservation of Iron Pot from Cheonmachong Ancient Tomb (천마총 출토 철부(鐵釜)의 제작기법 및 보존처리)

  • Lee, Seung Ryul;Shin, Yong Bi;Jung, Won Seob
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • It's shown how to proceed the study on Manufacturing techniques & Conservation to the Iron Pot from Cheonmachong Ancient Tomb(the 155th Tomb in Hwangnam-dong). In order to investigate manufacturing techniques of the Iron Pot, some parts of the relic were gathered. After mounting, polishing and etching on the relic, analyzing the metal microstructure was conducted. Also it's conducted a SEM-EDS analysis on the nonmetallic inclusion. White iron structure was observed in the metallurgical structure inspection, SEM-EDS analysis. It seems to be dried slowly at room temperature after casting, doesn't look as particular heat treatment to improve brittleness. It is estimated that it's as the handle seam side were verified about 3cm inch wide, 1.5 thick in center of body, so 2 separate half-completed products was cast with width-type mould. The manufacturing techniques Using white cast iron structure, width-type mould are observable to the Iron Pot excavated from Sikrichong Ancient Tomb & Hwangnamdaechong grand Ancient Tomb around those were constructed the same time. It's able to recognize that it's almost identical manufacturing techniques at that time. Conservation is generically following those are survey of pretreatment, foreign material removal, stabilization, restoration and color matching in the order. cleaning & drying were added to the process as occasion demands. The strengthening treatment were difficult with artifact's volume, low concentration Paraloid NAD-10 solution was spread two or three times with a brush, surface hardening also came up with 15wt% Paraloid NAD-10 solution after the conservation was complete. There were connection & restoration for the restoration to the damage after modeling forms that it's similar to damaged parts by using the Fiber Reinforced Plastic resins(POLYCOAT FH-245, mold laminated type). Throughout this research, capitalizing on accumulations of measurements about the production technique of Iron Pot in the time of the fifth and 6th centuries is no less important than the Iron artifact's conservation for a better study in the future.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Study on the Casting Technology and Restoration of "Sangpyong Tongbo" (상평통보 주조와 복원기술연구)

  • Yun, Yong-hyun;Cho, Nam-chul;Jeong, Yeong-sang;Lim, In-ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.224-243
    • /
    • 2014
  • This study examined the materials and casting technology(cast, alloy, etc.) used in the manufacturing of bronze artifacts based on old literature such as Yongjae Chonghwa, Cheongong Geamul, and The Korea Review. In the casting experiment for restoration of Sangpyong Tongbo, a bronze and brass mother coin mold was made using the sand mold casting method described in The Korea Review. The cast was comprised of the original mold plate frame, wooden frame, and molding sand. Depending on the material of the outer frame, which contains the molding sand, the original mold plate frame can be either a wooden frame or steel frame. For the molding sand, light yellow-colored sand of the Jeonbuk Iri region was used. Next, the composition of the mother alloy used in the restoration of Sangpyong Tongbo was studied. In consideration of the evaporation of tin and lead during actual restoration, the composition of Cu 60%, Zn 30%, and Pb 10% for brass as stated in The Korea Review was modified to Cu 60%, Zn 35%, and Pb 15%. For bronze, based on the composition of Cu 80%, Sn 6%, and Pb 14% used for Haedong Tongbo, the composition was set as Cu 80%, Sn 11%, and Pb 19%. The mother coin mold was restored by first creating a wooden father coin, making a cast from the wooden frame and basic steel frame, alloying, casting, and making a mother coin. Component analysis was conducted on the mother alloy of the restored Sangpyong Tongbo, and its primary and secondary casts. The bronze mother alloy saw a 5% increase in copper and 4% reduction in lead. The brass parent alloy had a 5% increase in copper, but a 4% and 12% decrease in lead and tin respectively. Analysis of the primary and secondary mother coin molds using an energy dispersive spectrometer showed that the bronze mother coin mold had a reduced amount of lead, while the brass mother coin mold had less tin. This can be explained by the evaporation of lead and tin in the melting of the primary mother coin mold. In addition, the ${\alpha}$-phase and lead particles were found in the mother alloy of bronze and brass, as well as the microstructure of the primary and secondary coin molds. Impurities such as Al and Si were observed only in the brass mother coin mold.

The Manufacturing Techniques of the Stone Standing Maitreya Bodhisattva Bronze Wind Chimes of Gwanchoksa Temple, Nonsan (자연과학적 분석을 통한 논산 관촉사 석조미륵보살입상(論山 灌燭寺 石造彌勒菩薩立像) 청동풍탁(靑銅風鐸)의 제작 기법 연구)

  • LEE, Soyeon;CHUNG, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.22-37
    • /
    • 2021
  • The wind chime is a longstanding Jangeomgu (majestic article) found in Korea, China, and Japan. However, basic research on wind chimes is currently inadequate as it is difficult to estimate the time of production, and there are few relics. Therefore, this research morphologically classifies the eight bronze wind chimes decorating the baldachin of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan. Based on this, the manufacturing techniques and production period are scientifically demonstrated. The synthesis of the research results reveals that the structure and characteristics of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan differ depending on their location on the baldachin. The four large-sized wind chimes on the lower-baldachin were manufactured by casting a Cu-Sn-Pb alloy, and they are estimated to have been made during the early period of Goryeo. The two medium-sized wind chimes of the upper-baldachin's northern direction were manufactured through forging a Cu-Sn or Cu-Sn-Pb alloy, and they appear to have a similar structure to the cylindrical wind chimes appearing during the latter period of Goryeo and the Joseon period. The two small-sized wind chimes of the upper-baldachin's southern direction were manufactured by casting a Cu-Sn-Pb alloy containing Zn, and based on the chemical composition of the alloy and the shape of the clapper, they are estimated to have been manufactured during the latter period of Joseon. Through the observation of microstructures and a chemical composition analysis, it is demonstrated that two wind chimes of the lowerbaldachin were manufactured by casting and slow cooling the alloy with an alloy ratio of Cu:Sn:Pb≒80:15:5. In addition, it is estimated that the wind chimes of the upper-baldachin's northeast direction were manufactured by forging an alloy of Cu-Sn with a similar alloy ratio to that of forged high tin bronze. The results of a comparative analysis of prior research on domestic wind chimes confirm that two wind chimes of the lower-baldachin have a similar composition ratio to the wind chime excavated from Wolnamsaji in Gangjin, containing an amount of tin that corresponds with ancient records. Having a similar alloy ratio to forged high tin bronze, the wind chimes of the upper-baldachin's northeast direction are the only instances among all of the wind chimes that have been examined to date that were manufactured using this forging method. The purpose of this research is to collect baseline data to verify and classify the manufacturing period of wind chimes according to their morphological characteristics based on scientific evidence. It is hoped that this data can be utilized for the restoration and conservation processes of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan.