• 제목/요약/키워드: Microscopic structures

검색결과 283건 처리시간 0.026초

Asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers

  • Lebon, F.;Ronel-Idrissi, S.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.133-147
    • /
    • 2004
  • This paper deals with the asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers bonded with elastic solids. In the first part, a mathematical analysis shows how to obtain an interface law that replaces mechanically and geometrically the thin layer. This law is strongly non-linear and couples microscopic and macroscopic scales. In the second part of the paper, the microscopic terms are quantified numerically, and it is shown that they can be neglected.

서방출성 리오겔 연고의 물리적성질과 방출특성 (Physical Properties and Release Characterization of Sustained Release Lyogel Ointment)

  • 김미옥;신영희;김대덕;이치호
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권1호
    • /
    • pp.51-57
    • /
    • 1998
  • Tetracycline lyogel ointment consisting of hydroxy ethyl cellulose(HEC) in glycerin and Eudragit RS 100 in triacetin were prepared and then release characteristic were investigated. The physical properties of lyogel ointment such as viscosity, particle size and microscopic structures were also evaluated. The microscopic structures showed that lyogel particles containing drug were dispersed in the triactin solution. The release rate of drug from lyogel ointment as a function of HEC was not changed. However the release rate was significantly decresed when the amount of Eudragit RS 100 and triacetin in lyogel ointment was increased. The viscosity and weight fraction in external phase of lyogel ointment influenced the release rate. The current studies suggest that the release rate of drug can be controlled by changing of lyogel ointment compositions.

  • PDF

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

반구형 드레이핑 공정 중 포움의 밀도와 전단각에 따른 토우의 미세변형 (Micro-Deformation of Tows According to Foam Density and Shear Angle During Hemisphere Draping Process)

  • 정지규;장승환
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.849-856
    • /
    • 2006
  • In this paper, fabric composite draping on hemisphere moulds were studied to find out the deformation behaviour of micro-tow structures of fabrics during draping and thermoforming. Aluminium and PVC foams were used to fabricate the hemisphere moulds for draping tests. In order to observe the local tow deformation pattern during the draping several specimens for microscopic observation were sectioned from the draped hemisphere structures. The effect of forming condition and mould properties on tow deformation was investigated by the microscopic observation of the tow parameters such as crimp angle. Normalization scheme was performed to compare tow parameter variations with different forming conditions. Stress-strain .elations of two different PVC foams (HT70 and HT110) were tested to investigate the effect of foam property on the micro-tow deformation during forming.

혐기성 세균 Ruminococcus albus F-40에 의한 목재 cellulose의 분해특성 (Degradation Characteristics of Wood Cellulose by Ruminal Cellulolytic Anaerobic Bacterium Ruminococcus albus F-40)

  • 김윤수;위승곤;명규호
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.83-95
    • /
    • 1997
  • The degradation mode of lignocellulose by anaerobic ruminal cellulolytic bacterium Ruminococcus albus F-40 was investigated. Birchwood holocellulose and filter paper were incubated as the sole carbohydrate sources with using the Hungate techniques. After 2 or 4 days of incubation, samples were employed for chemical and electron microscopic evaluations. The degradation rate of cellulosic substrates and the adhesion rate of bacteria to the substrates increased proportionally with the decrease of relative crystallinity of cellulose, indicating the preferential breakdown of amorphous cellulose, by this bacterium. X-ray diffraction analyses and polarized light microscopy showed, however, that crystalline cellulose was also degraded by R. albus. FT-IR spectra indicated that not only cellulose but hemicellulose was also degraded by this bacterium. Electron microscopic investigations showed the protuberant structures on the surface of R. albus. These structures were much more significant when bacterial cells were grown in the media containing insoluble substrates, such as cellulose, indicating clearly that bacterial protuberant structures were induced by the substrates. Protuberant structures extended from the bacterial cells adhered tightly to the substrates and numerous vesicles covered the surface of cellulosic substrates affected. Cellulosome-like structures were distributed on the cellulose matrix. Electron microscopic works showed that diverse surface organells of R. albus were involved in the degradation of cellulosic materials. SEM examinations showed the breakdown of cellulose by R. albus was proceeded by severeal routes : short fiber formation, defibrillation and destrafication of cellulose microfibril.

  • PDF

α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구 (A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations)

  • 정예리;김진호;이태일
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

A review on angle resolved photoemission spectroscopy studies of Fe-based superconductors

  • Seo, J.J.;Kim, C.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.7-19
    • /
    • 2014
  • Since the discovery of iron-based superconductors in 2008, extensive and intensive studies have been performed to find the microscopic theory for the high temperature superconductivity in the materials. Electronic structure is the basic and essential information that is needed for the microscopic theory. Experimentally, angle resolved photoelectron spectroscopy (ARPES) is the most direct tool to obtain the electronic structure information, and therefore has played a vital role in the research. In this review, we review what has been done so far and what is needed to be done in ARPES studies of iron-based superconductors in search of the microscopic theory. This review covers issues on the band structure, orbital order/fluctuation, and gap structure/symmetries as well as some of the theories.

Scanning Electron Microscopic Observation of Human Skin Replica

  • Rhyu, Yeon-Seung;Chung, Ye-Ji;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • 제40권4호
    • /
    • pp.267-270
    • /
    • 2010
  • The skin is the largest organ of the integument system whose surface is closely related with many physiological and pathological conditions. Various methods are used to understand the structural and functional status of human skin. We would like to present usefulness of scanning electron microscopic (SEM) observation of skin replica and its significance of training module for a novice. The silicon replicas from several regions of the body (hand, finger, forearm, lip, and face) were casted by applying Exafine$^{(R)}$ mixture. The positive replicas were prepared by applying EPON 812 mixture on negative silicon replicas. Some of the negative silicon replicas were cut with a razor blade and surface profiles were observed. The negative and positive replicas were coated with platinum and were observed under the scanning electron microscope. We could investigate the detailed structures of the human skin surface without any physical damage to the subject. The positive replicas depicted real surface structure of the human skin vividly. The cross sectional view of the negative silicon replicas provided surface profile clearly. The scanning electron microscopic observation of the human skin replicas would be useful to study skin surface structures and to evaluate medical and esthetical applications.

알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究 (A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • 제10권1호
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

20% 축압축 시킨 초기재령 시멘트 페이스트 미세 분석 (Microscopic Analysis of Early Age Cement Paste Axially Compressed 20%)

  • 김성훈;김동완;양종석;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2002
  • Many researches in the past have shown that a majority initial cracking in concrete are caused during early age period. Therefore, the close examination of early age concrete behavior under various stress conditions is necessary to fully understand the cracking mechanism of concrete. In this study early age cement paste specimen is axially strained up to 20% of its original length by laterally reinforcing it. This type of test is called "Tube Squash Test" and has been previously used to apply up to 50% axial strain on concrete. Microscopic analyses (XRD, FESEM, EDS and DSE/TG) are performed on 20% axially strained early age cement paste specimen. The analysis results show that the microscopic structures and material characteristics of 20% axially strained cement paste remained same as the unstrained cement paste.

  • PDF