References
- P. J. Hirschfeld et al, "Gap symmetry and structure of Fe-based superconductors," Rep. Prog. Phys., vol. 74, pp. 124508, 2011. https://doi.org/10.1088/0034-4885/74/12/124508
-
I. I. Mazin et al, "Unconventional Superconductivity with a sign Reversal in the Order Parameter of
$LaFeAsO_{1-x}F_x$ ," Phys. Rev. Lett., vol. 101, pp. 057003, 2008. https://doi.org/10.1103/PhysRevLett.101.057003 -
F. F. Tafti et al, "Sudden reversal in the pressure dependence of
$T_c$ in the iron-based superconductor$KFe_2As_2$ ," Nat. Phys., vol. 9, pp. 349, 2013. https://doi.org/10.1038/nphys2617 - Ch. Platt et al, "Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors," Phys. Rev. B, vol. 85, pp. 180502, 2012. https://doi.org/10.1103/PhysRevB.85.180502
- S. Graser et al, "Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides," New J. Phys, vol. 11, pp. 025016, 2009. https://doi.org/10.1088/1367-2630/11/2/025016
-
R. Thomale et al, "Exotic d-Wave Superconducting state of Strongly Hole-Doped
$KxBa_{1-x}Fe_2As_2$ ," Phys. Rev. Lett., vol. 107, pp. 117001, 2011. https://doi.org/10.1103/PhysRevLett.107.117001 -
K. Suzuki et al, "Spin fluctuations and unconventional pairing in
$KFe_2As_2$ ," Phys. Rev. B, vol. 84, pp. 144514, 2011. https://doi.org/10.1103/PhysRevB.84.144514 - S. Maiti et al , "Evolution of the superconducting state of Fe-based compounds with doping," Phys. Rev. Lett., vol. 107, pp. 147002, 2011. https://doi.org/10.1103/PhysRevLett.107.147002
- R. Fernades et al, "Suppression of superconductivity by Neel type magnetic fluctuations in the iron pnictides," Phys. Rev. Lett., vol. 110, pp. 117004, 2013. https://doi.org/10.1103/PhysRevLett.110.117004
- W. C. Lee et al, "Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors," Phys. Rev. Lett., vol. 102, pp. 217002, 2009. https://doi.org/10.1103/PhysRevLett.102.217002
- V. Stanev et al, "Three-band superconductivity and the order parameter that breaks time-reversal symmetry," Phys. Rev. B, vol. 81, pp. 134522, 2010. https://doi.org/10.1103/PhysRevB.81.134522
- Ch. Platt et al, "Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors," Phys. Rev. B, vol. 85, pp. 180502, 2012. https://doi.org/10.1103/PhysRevB.85.180502
- P. Dai et al, "Magnetism and its microscopic origin in iron-based high temperature superconductors," Nat. Phys., vol. 8, pp. 709, 2012. https://doi.org/10.1038/nphys2438
- S. Liang et al, "Nematic state of Pnictides Stabilized by interplay between Spin, Orbital and Lattice Degreeds of Freedom," Phys. Rev. Lett., vol. 111, pp. 047004, 2013. https://doi.org/10.1103/PhysRevLett.111.047004
-
W. Lv et al, "Orbital ordering and unfrustrated (
${\pi}$ ,0) magnetism from degenerate double exchange in the iron pnictides," Phys. Rev. B, vol. 82, pp. 045125, 2010. https://doi.org/10.1103/PhysRevB.82.045125 - W.-G. Yin et al, "Unified picture for magnetic correlations in iron-based superconductors," Phys. Rev. Lett., vol. 105, pp. 107004, 2010. https://doi.org/10.1103/PhysRevLett.105.107004
- R. Fernades et al, "Preemptive nematic order, pseudogap, and orbital order in the iron pnictides," Phys. Rev. B, vol. 85, pp. 024534, 2012. https://doi.org/10.1103/PhysRevB.85.024534
-
M. Yi et al, "Symmetry breaking orbital anisotropy observed for detwinned
$Ba(Fe_{1-x}Co_x)_2As_2$ above the spin density wave transition," Proc. Natl. Acad. Sci., vol. 108, pp. 6878, 2011. https://doi.org/10.1073/pnas.1015572108 - M. Yi et al, "Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs," New J. Phys., vol. 14, pp. 073019, 2012 https://doi.org/10.1088/1367-2630/14/7/073019
- Y. Zhang et al, "Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs," Phys. Rev. B, vol. 85, pp. 085121, 2012. https://doi.org/10.1103/PhysRevB.85.085121
- J. Paglione et al, "High-temperature superconductivity in iron-based mateirals," Nat. Phys., vol. 6, pp. 1759, 2010.
-
C.-H. Lee et al, "Effect of Structural Parameters on Superconductivity in Fluorine-Free
$Ba(Fe_{1-x}Co_x)_2As_2$ (Ln=La, Nd)," J. Phys. Soc. Jpn., vol. 77, pp. 083704, 2008. https://doi.org/10.1143/JPSJ.77.083704 -
Y Mizuguchi et al, "Anion height dependence of
$T_c$ for the Fe-based superconductor," Superconductor Science and Technology, vol. 23, pp. 05401, 2010. -
Kazuhiko Kuroki et al, "Pnictogen height as a possible switch between high-
$T_c$ nodeless and low-$T_c$ nodal pairings in the iron-based superconductors," Phys. Rev. B, vol. 79, pp. 224511, 2009. https://doi.org/10.1103/PhysRevB.79.224511 -
J. Zhao et al, "Structural and magnetic phase diagram of
$CeFeAsO_{1-x}F_x$ and its relation to high-temperature superconductivity," Nat. Mater., vol. 7, pp. 953, 2008. https://doi.org/10.1038/nmat2315 - http://www.physics.berkeley.edu/research/lanzara/research/pnictide.html
- H. Kontani et al, "Origin of orthombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: Analysis based on the orbital fluctuations theory," Phys. Rev. B, vol. 84, pp. 024528, 2011. https://doi.org/10.1103/PhysRevB.84.024528
- H. Kontani et al, "Orbital fluctuation theory in iron-based superconductors: s++-wave superconductivity, structure transition , and impurity-induced nematic order," Sol. Stat. Comm., vol. 152, pp. 718, 2012. https://doi.org/10.1016/j.ssc.2012.01.012
-
T. Saito et al, "Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and
$Z_2$ orbital pocket on superconductivity," Phys. Rev. B, vol. 82, pp. 144510, 2010. https://doi.org/10.1103/PhysRevB.82.144510 - Y. Ono et al, "Structural transition, ferro-orbital order and its fluctuation-mediated S++-wave superconductivity in iron pnictides," Sol. Stat. Comm., vol. 152, pp. 701, 2012. https://doi.org/10.1016/j.ssc.2012.01.017
-
S. Kasahara et al, "Electronic nematicity above the structural and superconducting transition in
$BaFe_2(As_{1-x}P_x)_2$ ," Nature, vol. 486, pp. 7403, 2012. - M. Daghofer et al, "Orbital-weight redistribution triggered by spin order in the pnictides," Phys. Rev. B, vol. 81, pp. 180514, 2010. https://doi.org/10.1103/PhysRevB.81.180514
-
M. Yoshizawa et al, "Anomalous elastic behavior and its correation with superconductivity in iron-based superconductor
$Ba(Fe_{1-x}Co_x)_2As_2$ ," Mod. Phys. Lett. B, vol. 26, pp. 1230011, 2012. - D. Liu et al, "Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor," Nat. Comm., vol. 3, pp. 1946, 2012.
- L. X. Yang et al, "Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy," Phys. Rev. B, vol. 82, pp. 104519, 2010. https://doi.org/10.1103/PhysRevB.82.104519
- S. V. Borisenko et al, "Superconductivity without Nesting in LiFeAs," Phys. Rev. Lett., vol. 105, pp. 067002, 2010. https://doi.org/10.1103/PhysRevLett.105.067002
- A. Damascelli ,"Probing the Electronic Structure of complex systems by ARPES," Physica Scripta., T109, 2004.
- I. I. Mazin et al, "Superconductivity gets an iron boost," Nature, vol. 464, pp. 183, 2010. https://doi.org/10.1038/nature08914
- M.M. Korshunov et al, "Theory of magnetic excitations in iron-based layered superconductors," Phys. Rev. B, vol. 78, pp. 140509 2008. https://doi.org/10.1103/PhysRevB.78.140509
- A. V. Chubukov, "Pairing mechanism in Fe-based superconductors," Annu Rev. Condens. Mat. Phys., vol. 3, pp. 57, 2012. https://doi.org/10.1146/annurev-conmatphys-020911-125055
- F. Wang et al ,"The electron-pairing mechanism of iron-based superconductors," Science, vol. 332, pp. 200, 2011. https://doi.org/10.1126/science.1200182
-
Q. Si et al, "Strong correlations and magnetic frustration in the high
$T_c$ iron pnictides," Phys. Rev. Lett., vol. 101, pp. 076501, 2008. - Q. Si et al," Correlation effects in the iron pnictides," New J. Phys., vol. 11, pp. 045001, 2009. https://doi.org/10.1088/1367-2630/11/4/045001
- K. Seo et al, "Pairing symmetry in a two-orbital exchange coupling model of oxypnictides," Phys. Rev. Lett., vol. 101, pp. 206404, 2008. https://doi.org/10.1103/PhysRevLett.101.206404
- F. Ma et al,"Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO," Phys. Rev. B, vol. 78, pp. 224517, 2008 https://doi.org/10.1103/PhysRevB.78.224517
- M. M. Qazilbash et al, "Electronic correlations in the iron pnictides," Nat. Phys., vol. 5, pp. 647, 2009. https://doi.org/10.1038/nphys1343
-
T. Terashima et al., "Fermi surface and mass enhancement in
$KFe_2As_2$ from de Haas-Van Alphen effect measurements," J. Phys. Soc. Jpn., vol. 79, pp. 053702, 2010. https://doi.org/10.1143/JPSJ.79.053702 - K. Nakamura et al, "Ab initio derivation of low-energy model for iron-based superconductors LaFeAsO and LaFePO," J. Phys. Soc. Jpn., vol. 77, pp. 093711, 2008. https://doi.org/10.1143/JPSJ.77.093711
- D. S. Inosov et al, "Crossover from weak to strong pairing in unconventional superconductors," Phys. Rev. B, vol. 83, pp. 213520, 2011.
- Z. P. Yin et al, "Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides," Nat. Mater., vol. 10, pp. 932, 2011. https://doi.org/10.1038/nmat3120
- C. He et al, "Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy," Phys. Rev. Lett., vol. 105, pp. 117002, 2010. https://doi.org/10.1103/PhysRevLett.105.117002
- A. Nicholson et al., "Role of degeneracy, hybridization, and nesting in the properties of multi-orbital systems," Phys. Rev. B, vol. 84, pp. 094519, 2011. https://doi.org/10.1103/PhysRevB.84.094519
-
M. Y. Wang et al, "Spin waves and magnetic exchange interactions in insulating
$Rb_{0.89}Fe_{1.58}Se_2$ ," Nat. Comm., vol. 2, pp. 580, 2011. https://doi.org/10.1038/ncomms1573 -
M. S. Liu et al, " Nature of magnetic excitations in superconducting
$BaFe_{1.9}Ni_{0.1}As_2$ ." Nat. Phys., vol. 8, pp. 376, 2012. https://doi.org/10.1038/nphys2268 -
H. Park et al., "Magnetic excitation spectra in
$BaFe_2As_2$ : A two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method," Phys. Rev. Lett., vol. 107, pp. 137007, 2011. https://doi.org/10.1103/PhysRevLett.107.137007 - H. Gretarsson et al, "Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy," Phys. Rev. B, vol. 84, pp. 100509, 2011. https://doi.org/10.1103/PhysRevB.84.100509
-
F. Bondino et al, "Evidence for Strong Itinerant Spin Fluctuations in the Normal State of
$CeFeAsO_{0.89}F_{0.11}$ Iron-Oxypnictide Superconductors," Phys. Rev. Lett., vol. 101, pp. 267001, 2008. https://doi.org/10.1103/PhysRevLett.101.267001 -
M. Yi et al, "Electronic structure of the
$BaFe_2As_2$ family of iron-pnictide superconductors," Phys. Rev. B, vol. 80, pp. 024515, 2009. https://doi.org/10.1103/PhysRevB.80.024515 -
W. Malaeb et al, "Abrupt change in the energy gap of superconducting
$Ba_{1-x}K_xFe_2As_2$ single crystals with hole doping," Phys. Rev. B, vol. 86, pp. 165117, 2012. https://doi.org/10.1103/PhysRevB.86.165117 - N. Xu et al, "Effects of Ru substitution on electron correlations and Fermi-surface dimensionality," Phys. Rev. B, vol. 86, pp. 064505, 2012. https://doi.org/10.1103/PhysRevB.86.064505
-
Z. R. Ye et al, "Orbital selective correlations between nesting/scattering/Lifshitz transition and the superconductivity in
$AFe_{1-x}Co_xAs$ (A=Li, Na)," arXiv 1303.0682v1. - S. V. Borisenko et al, "Superconductivity without nesting in LiFeAs," Phys. Rev. Lett., vol. 105, pp. 067002, 2010. https://doi.org/10.1103/PhysRevLett.105.067002
-
T. Qian et al, "Absence of holelike Fermi surface in superconducting
$K_{0.8}Fe_{1.7}Se_2$ revealed by ARPES," Phys. Rev. Lett., vol. 106, pp. 187001, 2011. https://doi.org/10.1103/PhysRevLett.106.187001 -
Y. Zhang et al, "Nodeless superconducting gap in
$A_xFe_2Se_2$ (A=K, Cs) revealed angle-resolved photoemission spectroscopy," Nat. Mater., vol. 10, pp. 2981, 2011. -
Y. Zhang et al, "Heavily electron-doped electronic structure and isotropic superconducting gap in
$A_xFe_2Se_2$ (A=K, Cs)," Nat. Mater., vol. 10, pp. 273, 2011. https://doi.org/10.1038/nmat2981 -
D. Mou et al, "Distinct Fermi surface topology and nodelss superconducting gap in a
$(Tl_{0.58}Rb_{0.42})Fe_{1.72}Se_2$ superconductor," Phys. Rev. Lett., vol. 106, pp. 107001, 2011. https://doi.org/10.1103/PhysRevLett.106.107001 - H. Miao et al, "Coexistence of orbital degeneracy lifting and superconductivity in iron-based superconductors," Phys. Rev. B, vol. 89, pp. 220503, 2014. https://doi.org/10.1103/PhysRevB.89.220503
- S. V. Borisenko et al, "One-Sign Order Parameter in Iron Based Superconductor," Symmetry, vol. 4, pp. 251, 2012. https://doi.org/10.3390/sym4010251
-
H. Miao et al, "Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in
$FeTe_{0.55}Se_{0.45}$ ," Phys. Rev. B, vol. 85, pp. 094506, 2012. https://doi.org/10.1103/PhysRevB.85.094506 -
N. Xu et al, "Angle-resolved photoemission observation of isotropic superconducting gaps in isovalent Ru-substituted
$Ba(Fe_{0.75}Ru_{0.25})_2As_2$ ," Phys. Rev. B, vol. 87, pp. 094513, 2013. https://doi.org/10.1103/PhysRevB.87.094513 -
H. Ding et al, "Observation of Fermi-surface-dependent nodeless superconducting gaps in
$Ba_{0.6}K_{0.4}Fe_2As_2$ ," Eur. Phys. Lett., vol. 83, pp. 47001, 2008. https://doi.org/10.1209/0295-5075/83/47001 - K. Terashima et al, "Fermi surface nesting induced strong pairing in iron-based superconductors," Proc. Natl. Acad. Sci., vol. 106, pp. 7330, 2009. https://doi.org/10.1073/pnas.0900469106
- Y. B. Huang et al, "Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors," Am. Ist. Phys. Adv., vol. 2, pp. 041409, 2012.
- T. Shimojima et al ,"Orbital Independent Superconducting Gaps in Iron Pnictides," Science, vol. 332, pp.564, 2011. https://doi.org/10.1126/science.1202150
- K. Umezawa et al, "Unconventional Anisotropic s-Wave Superconducting Gaps of the LiFeAs Iron-Pnictide Superconductor," Phys. Rev. Lett., vol. 108, pp. 037002, 2012. https://doi.org/10.1103/PhysRevLett.108.037002
-
T. Kondo et al, "Momentum Dependence of the Superconducting Gap in
$NdFeAsO_{0.9}F_{0.1}$ Single Crystals Measured by Angle Resolved Photoemission Spectroscopy," Phys. Rev. Lett., vol. 101, pp. 147003, 2008. https://doi.org/10.1103/PhysRevLett.101.147003 -
K. Okazaki et al, "Octet-Line Node Structure of Superconducting Order Parameter in
$KFe_2As_2$ ," Science, vol. 337, pp. 1314, 2012. https://doi.org/10.1126/science.1222793 -
Y. Zhang et al, "Nodal superconducting-gap structure in ferropnictide superconductor
$BaFe_2(As_{0.7}P_{0.3})_2$ ," Nat. Phys., vol. 8, pp. 2248, 2012. -
S. O. Diallo et al, "Itinerant magnetic excitations in antiferromagnetic
$CaFe_2As_2$ ," Phys. Rev. Lett., vol. 102, pp. 187206, 2009. https://doi.org/10.1103/PhysRevLett.102.187206 -
R. A. Ewings et al, "Itinerant spin excitations in
$SrFe_2As_2$ measured by inelastic neutron scattering," Phys. Rev. B, vol. 83, pp. 214519, 2011. https://doi.org/10.1103/PhysRevB.83.214519 -
J. Zho et al. "Spin waves and magnetic exchange interaction in
$CaFe_2As_2$ ," Nat. Phys., vol. 5, pp. 555, 2011. -
L. W Harriger et al, "Nematic spin fluid in the tetragonal phase of
$BaFe_2As_2$ ," Phys. Rev. B, vol. 84, pp. 054544, 2011. https://doi.org/10.1103/PhysRevB.84.054544 -
H. Chen et al, "Coexistence of the spin-density wave and superconductivity in
$Ba_{1-x}K_xFe_2As_2$ ," Euro. Phys. Lett., vol. 85, pp. 17006, 2009. https://doi.org/10.1209/0295-5075/85/17006 -
D. K. Pratt et al, "Coexistence of competing Antiferromagnetic and Superconducting Phases in the Underdoped
$Ba(Fe_{0.953}Co_{0.047})_2As_2$ Compound Using X-ray and Neutron Scattering Techniques," Phys. Rev. Lett., vol. 103, pp. 087001, 2009. https://doi.org/10.1103/PhysRevLett.103.087001 -
S. Kasahara et al, "Evolution from non-Fermi to Fermi-liquid transport via isovalent doping in
$BaFe_2(As_{1-x}P_x)_2$ superconductors," Phys. Rev. B, vol. 82, pp. 184519, 2010. https://doi.org/10.1103/PhysRevB.82.184519 -
Z. R. Ye et al, "Doping dependence of the electronic structure in phosphorus-doped ferropnictide superconductor
$BaFe_2(As_{1-x}P_x)_2$ studied by angle-resolved photoemission spectroscopy," Phys. Rev. B, vol. 86, pp. 035136, 2012. https://doi.org/10.1103/PhysRevB.86.035136 -
M. J. Eom et al, "Evolution of transport properties of
$BaFe_{2-x}Ru_xAs_2$ in a wide range of isovalent Ru substitution," Phys. Rev. B, vol. 85, pp. 024536, 2012. https://doi.org/10.1103/PhysRevB.85.024536 - K. Kirshenbaum et al, "Universal pair-breaking in transition-metal-substituted iron-pnictide superconductors," Phys. Rev. B, vol. 86, pp. 14505, 2012. https://doi.org/10.1103/PhysRevB.86.014505
-
A. S. Sefat et al, "Superconductivity at 22K in Co-Doped
$BaFe_2As_2$ Crystals," Phys. Rev. Lett., vol. 101, pp. 117004, 2008. https://doi.org/10.1103/PhysRevLett.101.117004 -
H.-Y. Liu et al, "Pseudogap and Superconducting Gap in
$SmFeAs(O_{1-x}F_x)$ Superconductor from Photoemission Spectroscopy," Chin. Phys. Lett., vol. 25, pp. 3761, 2008. https://doi.org/10.1088/0256-307X/25/10/066 -
T. Sato et al, "Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor
$La(O_{1-x}F_x)FeAs$ ," J. Phys. Soc. Jpn., vol. 77, pp. 063708, 2008. https://doi.org/10.1143/JPSJ.77.063708 - H. Ikeda et al., "Pseudogap and Superconductivity in Iron-Based Layered Superconductor Studied by Flucutation-Exchange Approximation," J. Phys. Soc. Jpn., vol. 77, pp. 123707, 2008. https://doi.org/10.1143/JPSJ.77.123707
- T. Shimojima et al, "Pseudogap formation above the superconducting dome in iron pnictides," Phys. Rev. B, vol. 89, pp. 045101, 2014. https://doi.org/10.1103/PhysRevB.89.045101
- Y. Ishida et al, "Unusual Pseudogap Features Observed in Iron Oxypnictide Superconductors," J. Phys. Soc. Jpn., vol. 77, pp. 61, 2008.
-
K. Ahilan et al, "
$F^{19}$ NMR investigation of the iron pnictide superconductor$LaFeAsO_{0.89}F_{0.11}$ ," Phys. Rev. B, vol. 78, pp. 100501, 2008. https://doi.org/10.1103/PhysRevB.78.100501 -
D. R. Garcia et al, "Core-level and valence-band study using angle-integrated photoemission on
$LaFeAsO_{0.9}F_{0.1}$ ," Phys. Rev. B, vol. 78, pp. 245119, 2008. https://doi.org/10.1103/PhysRevB.78.245119 -
T. Mertelj et al, "Distinct Pseudogap and Quasiparticle Relaxation Dynamics in the Superconducting State of Nearly Optimally Doped
$SmFeAsO_{0.8}F_{0.2}$ Single Crystals," Phys. Rev. Lett., vol. 102, pp. 117002, 2009. https://doi.org/10.1103/PhysRevLett.102.117002 -
M. A. Tanatar et al, "Pseudogap and its critical point in the heavily doped
$Ba(Fe_{1-x}Co_x)_2As_2$ from c-axis resistivity measurements," Phys. Rev. B, vol. 82, pp. 134528, 2010. https://doi.org/10.1103/PhysRevB.82.134528 -
S. H. Baek et al, "Pseudogap-like phase in
$Ca(Fe_{1-x}Co_x)_2As_2$ revealed by 75As NQR," Phys. Rev. B, vol. 84, pp. 094510, 2011. https://doi.org/10.1103/PhysRevB.84.094510 - Y. C. Wen et al, "Gap Opening and Orbital Modification of Superconducting FeSe above the Structural Distortion," Phys. Rev. Lett., vol. 108, pp. 267002, 2012. https://doi.org/10.1103/PhysRevLett.108.267002
-
S. J. Moon et al, "Infrared Measurement of the Pseudogap of P-Doped and Co-doped High-Temperature
$BaFe_2As_2$ Superconductors," Phys. Rev. Lett., vol. 109, pp. 027006, 2012. https://doi.org/10.1103/PhysRevLett.109.027006 -
K. Hashimoto et al, "A sharp peak of the zero-temperature penetration depth at optimal composition in
$BaFe_2(As_{1-x}P_x)_2$ ," Science, vol. 336, pp. 1554, 2012. https://doi.org/10.1126/science.1219821 -
P. Walmsley et al, "Quasiparticle mass enhancement close to the quantum critical point in
$BaFe_2(As_{1-x}P_x)_2$ ," arXiv:1303.3396 https://doi.org/10.1103/PhysRevLett.110.257002 -
J. K. Dong et al, "Quantum criticality and nodal superconductivity in the FeAs-based superconductor
$KFe_2As_2$ ," Phys. Rev. Lett., vol. 104, pp. 087005, 2010. https://doi.org/10.1103/PhysRevLett.104.087005 - J. Dai et al, "Iron pnictides as a new setting for quantum criticality," Proc. Natl. Acad. Sci., vol. 106, pp. 4118, 2009. https://doi.org/10.1073/pnas.0900886106
-
Y. Nakai et al, "Unconventional superconductivity and antiferro magnetic quantum critical behavior in the isovalent doped
$BaFe_2(As_{1-x}P_x)_2$ ," Phys. Rev. Lett., vol. 105, pp. 107003, 2010. https://doi.org/10.1103/PhysRevLett.105.107003 -
F. Zheng et al, "Antiferromagnetic FeSe monolayer on
$SrTiO_3$ : The charge doping and electric field effects," Scientific Reports, vol. 3, pp. 2213, 2013. https://doi.org/10.1038/srep02213 -
Q.-Y. Wang et al, "Interface-induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on
$SrTiO_3$ ," Chin. Phys. Lett., vol. 29, pp. 037402, 2012. https://doi.org/10.1088/0256-307X/29/3/037402 - S.-L He et al, "Phase diagram and high temperature superconductivity at 65K in tuning carrier concentration of single-layer FeSe films," Nat. Mater., vol. 12, pp. 605, 2013. https://doi.org/10.1038/nmat3648
-
S. Y. Tan. et al, "Interface-induced superconductivity and strain-dependent spin density wave in FeSe/
$SrTiO_3$ thin films," Nat. Mater., vol. 12, pp. 634, 2013. https://doi.org/10.1038/nmat3654 -
Y. Y. Xiang et al, "High-temperature superconductivity at the FeSe/
$SrTiO_3$ interface," Phys. Rev. B, vol. 86, pp. 134508, 2012. https://doi.org/10.1103/PhysRevB.86.134508
Cited by
- Superconducting properties of thes±-wave state: Fe-based superconductors vol.29, pp.12, 2017, https://doi.org/10.1088/1361-648X/aa564b
- Superconducting properties of the s ?-wave state: Fe-based superconductors vol.29, pp.12, 2014, https://doi.org/10.1088/0953-8984/29/12/123003