• Title/Summary/Keyword: Microscopic Level

Search Result 388, Processing Time 0.027 seconds

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

Histopathological alterations of the rat myocardium under simulated microgravity (미세중력 환경에 노출된 백서 심근 조직의 병리학적 변화)

  • Kim, Hyun-Soo;Kim, Youn Wha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.63-67
    • /
    • 2012
  • Spaceflight induces a number of cardiovascular physiological alterations. To study adaptations to microgravity on Earth, the tail-suspended, hindlimb-unloaded rat model has been used to simulate the effects of microgravity. Despite the extensive use of this model to infer physiological adaptations of many organs to microgravity, little information has been obtained on the effect of tail suspension(TS) on cardiac adaptations in the rat. This study was aimed to investigate the effects of simulated microgravity on the rat myocardium using the TS model. Twenty-four male Sprague-Dawley rats were randomly assigned to 3 experimental groups(1, 7 and 14 days of TS) and a control group. A microscopic examination was performed to assess histopathological changes in the myocardial morphology. The hearts from the control group, the 1 day-TS rats and the 7 day-TS rats revealed no evident abnormalities in cardiomyocyte size and morphology. At day 14 of TS, in contrast, the ventricular cardiomyocytes appeared more separated from each other and were slightly smaller in size compared with those of the control group. Also seen were scattered areas exhibiting focal disorganization of muscle fibers and some degenerating cardiomyocytes, of which the nuclei had become pyknotic or disappeared. In this study, we demonstrated that the ventricular cardiomyocytes underwent degeneration and atrophy at the microscopic level during exposure to simulated microgravity in TS rats.

Surgical Treatment of Ten Adults with Spinal Extradural Meningeal Cysts in the Thoracolumbar Spine

  • Xu, Feifan;Jian, Fengzeng;Li, Liang;Guan, Jian;Chen, Zan
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.238-246
    • /
    • 2021
  • Objective : To retrospectively analyze the clinical characteristics and surgical experience of 10 adults with spinal extradural meningeal cysts (SEMCs) in the thoracolumbar spine which may further provide evidence for surgical decision-making. Methods : Ten adults with SEMCs in the thoracolumbar spine were surgically treated and enrolled in this study. Clinical manifestations, imaging data, intraoperative findings and postoperative outcome were recorded. Results : Clinical manifestations of SEMCs included motor and sensory dysfunction of the lower limbs and urination and defecation disturbance. The cysts presented as intraspinal occupying lesions dorsal to the spine, ranging from the T8 to L3 level. Defects of eight cases were found on preoperative magnetic resonance imaging (MRI). Selective hemilaminectomy or laminectomy were used to reveal the defect within the cyst, which was further sutured with microscopic technique. The final outcome was excellent or good in seven cases and fair in three cases. No recurrence was observed during follow-up. Conclusion : SEMCs are rare intraspinal cystic lesions. Radiography and MRI are clinically practical methods to assess defects within SEMCs. Selective hemilaminectomy or laminectomy may reduce surgical trauma. Detection and microscopic suturing of the defects are the key steps to adequately decompress the nervous tissue and prevent postoperative recurrence.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Spraguea sp. (Microsporidia: Spraguidae) infection in yellow goosefish (Lophius litulon) in Korea

  • Han-Seul Cho;Jae-Young Lee;Jeong-Ho Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.303-310
    • /
    • 2023
  • Yellow goosefish (Lophius litulon) is one of the important commercial fisheries target species in Korea, and commonly consumed as braised or stew. The microsporidian Spraguea is known to infect the nervous system of lophiid fish, forming numerous visible whitish xenomas. This parasite is commonly found in lophiid fish worldwide, but there is no information on the infection status of this parasite in Korea. We obtained commercially available chopped packs of lophiid fish from several fish markets and investigated their prevalence of infection. The isolated xenomas were crushed and purified as mature spore suspension. Microscopic observation and PCR were conducted to visualize and identify them. The host fish was also identified by DNA bar cording analysis. All the specimens were heavily infected and microscopic observation with Giemsa or Chromotrope 2R stain revealed tiny oval shapes of typical microsporidian spores. PCR analysis targeting the partial SSU rDNA showed that our specimen belongs to the genus Spraguea clade. But clear identification at the species level was not possible, due to the insufficient information of gene sequences available in GenBank. In addition, all of our host fish specimen was identified as yellow goosefish. This is the first report of a microsporidian parasite Spraguea infection in yellow goosefish from Korea.

Johannes Nathanael Lieberkühn (1711-1756): luminary eighteenth century anatomist and his illuminating discovery of intestinal glands

  • Sanjib Kumar Ghosh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • Johannes Nathanael Lieberkühn was a prodigious anatomist whose meticulous experiments and precise detailing helped in comprehending the microscopic anatomy of digestive system during early part of eighteenth century. Notably, his inventions in the field of microscopy aptly complemented his quest for anatomical knowledge at microscopic level. He designed a reflector (Lieberkühn reflector) which enhanced the amount of focussed light leading to bright illumination of tissue specimen. He invented the solar microscope which provided excellent resolution of minute anatomical details. Lieberkühn discovered the digestive juice secreting tubular glands (glands of Lieberkühn) present at the base of intestinal villi producing epithelial invaginations (crypts of Lieberkühn). He also described the intricate juxtaposition of blood vessels in relation to a single intestinal villi. Moreover, through empirically designed experimental set up, Lieberkühn was able to demonstrate the flow of lymph from intestinal villi to collecting lymphatic vessels. Also, his grandiose collection of laboratory specimens involving vascular anatomy are a testimony of his untiring efforts in academia. His contributions were seminal in comprehending the anatomy of digestive system and paved the way for future revelations. His work unveiled the enormous scope of microanatomy in medical science and catalysed the advent of histological staining methods a century later.

Analysis of K-12 Science Textbooks Related to 'States of Water', 'State Change of Water', and 'Conditions of State Change' (물의 상태, 상태변화 및 그 조건에 대한 유치원, 초등, 중등 과학 교재의 내용 분석)

  • Paik, Seong-Hey;Park, Jae-Won;Park, Jin-Ok;Im, Myoung-Hyuk;Ko, Young-Mi;Cho, Boo-Kyung;Kim, Hyo-Nam
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.215-229
    • /
    • 2002
  • This study is to analyze the contents related to 'state of water', 'state change of water', and 'conditions of state change' in K-12 science textbooks. For this, we analyzed textbooks based on the 5th kindergarten curriculum, the 6th elementary school science curriculum and the 6th middle school science curriculum. Findings show that some of the contents are designed well by topical sequencing or by spiral sequencing. But others have some problems based on topical sequencing and spiral sequencing. Generally, the contents are represented in the order of Perception of phenomena with senses level, Macroscopic understanding level, Understanding of scientific term level, Microscopic understanding level by grade. But the state change contents related to solidification and melting, and conditions of state change contents related to heat, temperature, wind, and humidity are not represented in the level of Microscopic understanding. The contents of state change and conditions related to heat and wind are not represented in the level of scientific term also.