• Title/Summary/Keyword: Microfluidic array

Search Result 18, Processing Time 0.024 seconds

Microfluidic System Based High Throughput Drug Screening System for Curcumin/TRAIL Combinational Chemotherapy in Human Prostate Cancer PC3 Cells

  • An, Dami;Kim, Kwangmi;Kim, Jeongyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.355-362
    • /
    • 2014
  • We have developed a fully automated high throughput drug screening (HTDS) system based on the microfluidic cell culture array to perform combinational chemotherapy. This system has 64 individually addressable cell culture chambers where the sequential combinatorial concentrations of two different drugs can be generated by two microfluidic diffusive mixers. Each diffusive mixer has two integrated micropumps connected to the media and the drug reservoirs respectively for generating the desired combination without the need for any extra equipment to perfuse the solution such as syringe pumps. The cell array is periodically exposed to the drug combination with the programmed LabVIEW system during a couple of days without extra handling after seeding the cells into the microfluidic device and also, this device does not require the continuous generation of solutions compared to the previous systems. Therefore, the total amount of drug being consumed per experiment is less than a few hundred micro liters in each reservoir. The utility of this system is demonstrated through investigating the viability of the prostate cancer PC3 cell line with the combinational treatments of curcumin and tumor necrosis factor-alpha related apoptosis inducing ligand (TRAIL). Our results suggest that the system can be used for screening and optimizing drug combination with a small amount of reagent for combinatorial chemotherapy against cancer cells.

Microfluidic Array for Simultaneous Detection of Antigen-antibody Bindings (항원-항체 결합의 동시 검출을 위한 미세 유체 어레이)

  • Bae, Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper, a microfluidic array biochip for simultaneously detecting multiple antigen-antibody bindings was designed and implemented. The biochip has the single channel in which microreaction chambers are serially connected, and the antibody-coated microbeads are packed in each microreaction chamber. In addition, the weir structure was fabricated in the microchannel using the gray-scale photolithography in order to trap the microbeads in the microreaction chamber. Three kinds of antibodies were chosen, and the antibodies were immobilized onto the microbeads by the streptavidin-biotin conjugation. In the experiment, as the fluorescence-labeled antigens were injected into the microchannel, the antigen-antibody bindings were completed in 10 minutes. When the solution with multiple antigens was injected into the microchannel, it was observed that the fluorescence intensity increased in only the corresponding microreaction chambers with few non-specific binding. The microfluidic array biochip implemented in this study provides, even with the consumption of tiny amount of sample and fast reaction time to simultaneously detect multiple immunoreactions.

Chemotactic Cell Migration around Hollow Silica Beads Containing Chemotatic Reagent (약물 담지 다공성 중공 실리카 미세구 주위 세포의 주화성 이동)

  • Kim, Hae-Chun;Kang, Mi-Seon;Rhee, Seog-Woo
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.344-350
    • /
    • 2010
  • This paper demonstrates a microfluidic chip incorporating patterned hollow silica beads that can be effectively used for chemotaxis assay. The hollow silica bead has been exploited to develop a carrier for chemoattractant to induce cell migration. The microfluidic chip contains a patterned array of microfabricated docks which can hold only one bead per docking site. The hollow bead placed inside microfluidic chip releases chemotactic reagent (PDGF-BB) around its periphery in a controlled fashion which generates a signal for chemotatic migration of fibroblast cells. The number of cells migrated close to each bead has been assessed. On-chip cell migration assay showed a remarkable result proving the high efficiency and reliable accuracy in quantitative analysis. Therefore, the device could be extensively used in cell migration assay and other various studies related to cellular movements.

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won;Kang, Dong-Ku;Choo, Jae-Bum;Demllo, Andrew J.;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.705-712
    • /
    • 2011
  • Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.

A Ternary Microfluidic Multiplexer using Control Lines with Digital Valves of Different Threshold Pressures (서로 다른 임계압력을 가지는 디지털 밸브가 설치된 제어라인을 이용한 3 진 유체분배기)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.568-572
    • /
    • 2009
  • We present a ternary microfluidic multiplexer unit, capable to address three flow channels using a pair of control lines with two different threshold pressure valves. The previous binary multiplexer unit addresses only two flow channels using a pair of control line with identical threshold pressure valves, thus addressing $2^{n/2}$ flow channels using n control lines. The present ternary multiplexer addressing three flow channels using a pair of control lines, however, is capable to address $3^{n/2}$ flow channels using n control lines with two different threshold pressure valves. In the experimental study, we characterized the threshold pressure and the response time of the valves used in the ternary multiplexer. From the experimental observation, we also verified that the present ternary multiplexer unit could be operated by two equivalent valve operating conditions: the different static pressures and dynamic pressures at different duty ratio. And then, $3{\times}3$ well array stacking ternary multiplexers in serial is addressed in cross and plus patterns, thus demonstrating the individual flow channel addressing capability of the ternary multiplexer. Thus, the present ternary multiplexer reduces the number of control lines for addressing flow channels, achieving the high well control efficiency required for simple and compact microfluidic systems.

A Disposable BioChip for Single Cell Manipulation

  • Yoon, Euisik
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.10a
    • /
    • pp.1-15
    • /
    • 2004
  • o Various microfluidic components including mixromixers and micropumps have been developed for disposable biochip applications. o Single cell capturing, positioning and nanoliter drug injection chip has been demostrated. o Multi-channel, two-dimensional micro-well array has been fabricated and cell capturing and specific reagent injection have been performed.

  • PDF

Development of Multi Sample Array System Based on Pneumatic Valve (공압식 미세밸브를 이용한 다중유체 배열장치 개발)

  • Kim, Chul Min;Park, Seo Jung;Kim, Gyu Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.59-63
    • /
    • 2017
  • We present a multi-sample array device based on a pneumatic system. Solenoid valves were used to control a micro valve in a pneumatic system. The use of a compressor together with a vacuum pump ensured that one outlet could supply both compression and vacuum pressure. The multi-sample array device was fabricated using conventional photolithography and PDMS casting. The device was composed of a multiplexer, sample array, and rinsing. The multiplexer could control four sample solutions injecting into the sample array chamber. Sample solution not arrayed was removed by DI-water from the rinsing inlet. To prevent trapping of microbubbles in the channel during injection of sample solution into the device, surfactant was added in PDMS solution to serve as a hydrophilic surface treatment. As a result, the device could be used as a sample array for 64 cases, using four samples and three columns of three chambers.

Paper-Based Bipolar Electrochemistry

  • Renault, Christophe;Scida, Karen;Knust, Kyle N.;Fosdick, Stephen E.;Crooks, Richard M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.146-152
    • /
    • 2013
  • We demonstrate that carbon electrodes screen-printed directly on cellulose paper can be employed to perform bipolar electrochemistry. In addition, an array of 18 screen-printed bipolar electrodes (BPEs) can be simultaneously controlled using a single pair of driving electrodes. The electrochemical state of the BPEs is read-out using electrogenerated chemiluminescence. These results are important because they demonstrate the feasibility of coupling bipolar electrochemistry to microfluidic paperbased analytical devices (${\mu}PADs$) to perform highly multiplexed, low-cost measurements.

Anisotropic Superomniphobic Wettability on Hierarchical Structures of Micro Line Array Combined with Fluorinated Wax (C24F50)

  • Jeon, Deok-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.209.2-209.2
    • /
    • 2014
  • In recent years, researches about hydrophobic and hydrophilic surfaces have been executed however their other effects have not been researched enough. In this paper, the fabrication method of hierarchical structures of micro line array combined with fluorinated wax for anisotropic superomniphobic wettability is presented. We have achieved anisotropic and superomniphobic surface via simple two step methods, which are maskless photolithography and wax deposition. In order to prove how to provide those characteristics, SEM, contact angle measurement tool and X-ray diffraction are used. Fluorinated wax is crystalized self-assembly and it is subordinated on micro line array so that it is able to display anisotropic wettability. Understanding on anisotropic superomniphobic surface and simple fabrication method has been attracted to apply for lots of applications which range from self-cleaning surface, microfluidic chip, to directionally fluid control device, even in oily fluid.

  • PDF

Multianalyte Sensor Array using Capillary-Based Sample Introduction Fluidic Structure: Toward the Development of an "Electronic Tongue"

  • Sohn, Young-Soo;Anslyn, Eric V.;McDevitt, John T.;Shera, Jason B.;Neikirk, Dean P.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.378-382
    • /
    • 2004
  • A micromachined fluidic structure for the introduction of liquid samples into a chip-based sensor array composed of individually addressable polymeric microbeads has been developed. The structure consists of a separately attached cover glass, a single silicon chip having micromachined channels and microbead storage cavities, and a glass carver. In our sensor array, transduction occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are covalently attached to termination sites on the polymeric microbeads. Data streams are acquired for each of the individual microbeads using a CCD. One of the key parts of the structure is a passive fluid introduction system driven only by capillary force. The velocity of penetration of a horizontal capillary for the device having a rectangular cross section has been derived, and it is quite similar to the Washburn Equation calculated for a pipe with a circular cross section having uniform radius. The test results show that this system is useful in a ${\mu}$-TAS and biomedical applications.