Microfluidic Array for Simultaneous Detection of Antigen-antibody Bindings

항원-항체 결합의 동시 검출을 위한 미세 유체 어레이

  • Received : 2011.04.08
  • Accepted : 2011.05.20
  • Published : 2011.07.25

Abstract

In this paper, a microfluidic array biochip for simultaneously detecting multiple antigen-antibody bindings was designed and implemented. The biochip has the single channel in which microreaction chambers are serially connected, and the antibody-coated microbeads are packed in each microreaction chamber. In addition, the weir structure was fabricated in the microchannel using the gray-scale photolithography in order to trap the microbeads in the microreaction chamber. Three kinds of antibodies were chosen, and the antibodies were immobilized onto the microbeads by the streptavidin-biotin conjugation. In the experiment, as the fluorescence-labeled antigens were injected into the microchannel, the antigen-antibody bindings were completed in 10 minutes. When the solution with multiple antigens was injected into the microchannel, it was observed that the fluorescence intensity increased in only the corresponding microreaction chambers with few non-specific binding. The microfluidic array biochip implemented in this study provides, even with the consumption of tiny amount of sample and fast reaction time to simultaneously detect multiple immunoreactions.

본 연구에서는 복수의 항원-항체 결합 반응을 동시에 검출할 수 있는 미세유체역학 기반의 바이오칩을 설계하고 구현하였다. 본 연구의 바이오칩은 항원-항체 결합 반응이 이루어지는 반응기가 단일 채널에 직렬로 연결된 구조를 가지며, 각각의 반응기에는 항체가 고정화된 마이크로비드가 채워진다. 마이크로비드의 누출을 방지하기 위해서 마이크로채널에 위어 구조를 형성하였으며, 이를 위해서 gray-scale photolithography를 이용하였다. 항원-항체 결합 반응 검출 실험을 위해 3종의 항체를 선정하였으며, 각각의 항체를 avidn-biotin 반응을 통해 마이크로비드에 고정화하였다. 그리고, 형광물질이 표지된 항원을 마이크로채널에 연속적으로 주입하여 항원-항체 결합 반응을 유발하였으며, 10분 이내에 반응이 완료되는 것을 확인하였다. 또한, 항원에 따른 해당 반응기에서의 형광강도 증가를 검출함으로써, 미세유체 어레이의 구현 가능성을 확인하였다. 본 연구에서 제안한 미세유체 바이오칩은 면역 반응의 동시 검출을 위해 소요되는 시료의 양을 줄이고 반응 속도를 향상시킬 수 있을 것으로 사료된다.

Keywords

References

  1. R. Bashir, "BioMEMS: state-of-the art in detection, opportunities and prospects," Adv. drug Delivery review vol. 56, pp. 1565-1586, Sep. 2004. https://doi.org/10.1016/j.addr.2004.03.002
  2. A. Bernard, and M. B. Delamarche, "Micromosaic immunoassays," Anal. Chem. vol. 73, pp. 8-12, Jan. 2001. https://doi.org/10.1021/ac0008845
  3. J. Heo, and R. M. Crooks, "Microfluidic biosensor based on an array of hydrogel-entrapped enzymes," Anal. Chem. vol. 77 pp. 6843-6851, Nov. 2005. https://doi.org/10.1021/ac0507993
  4. E. Eteshola, and D. Leckband, "Development and characterization of an ELISA assay in PDMS microfluidic channels," Sensor Actuat. B vol. 72, pp. 129-133, Jan. 2001. https://doi.org/10.1016/S0925-4005(00)00640-7
  5. S. Lai, S. Wang, J. Luo, J.J. Lee, S.-T. Yang, M.J. Madou, "Design of a compact disk-like microfluidic plateform for enzyme-linked immunosorbent assay," Anal. Chem. vol. 76, pp.1832-1837, April 2004. https://doi.org/10.1021/ac0348322
  6. K. Sato, M. Tokeshi, H. Kimura, and t. Kitamori, "Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis," Anal. Chem. vol. 73, pp.1213-1218, Mar. 2001. https://doi.org/10.1021/ac000991z
  7. J.-W. Choi, K.W. Oh, J.H. Thomas, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, and C.H. Ahn, "An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities," Lab. Chip. vol. 2, pp.27-30, Jan 2002. https://doi.org/10.1039/b107540n
  8. 배영민, "Gray-scale photolithography를 이용한 바이오칩 제작," 대한전기학회지 57권 pp.137-142, Jan. 2008.
  9. G.H. Seong, W. Zhan, and R.M. Crooks, "Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems: Application of DNA hybridization," Anal. Chem. vol. 74, pp.3372-3377, July 2002. https://doi.org/10.1021/ac020069k
  10. W. Shramm, S.-H. Paek, G. Voss, "Strategies for the immobilization of antibodies," Immunomethods vol.3, pp.93-103, Oct. 1993. https://doi.org/10.1006/immu.1993.1043
  11. H. Zhu, M. Snyder, "Protein chip technology," Curr. Opin. Chem. Biol. vol.7, pp.55-63, Dec. 2003. https://doi.org/10.1016/S1367-5931(02)00005-4