Chemotactic Cell Migration around Hollow Silica Beads Containing Chemotatic Reagent

약물 담지 다공성 중공 실리카 미세구 주위 세포의 주화성 이동

  • Kim, Hae-Chun (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Kang, Mi-Seon (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Rhee, Seog-Woo (Department of Chemistry, College of Natural Sciences, Kongju National University)
  • 김해춘 (공주대학교 자연과학대학 화학과) ;
  • 강미선 (공주대학교 자연과학대학 화학과) ;
  • 이석우 (공주대학교 자연과학대학 화학과)
  • Received : 2010.06.07
  • Accepted : 2010.08.17
  • Published : 2010.08.31

Abstract

This paper demonstrates a microfluidic chip incorporating patterned hollow silica beads that can be effectively used for chemotaxis assay. The hollow silica bead has been exploited to develop a carrier for chemoattractant to induce cell migration. The microfluidic chip contains a patterned array of microfabricated docks which can hold only one bead per docking site. The hollow bead placed inside microfluidic chip releases chemotactic reagent (PDGF-BB) around its periphery in a controlled fashion which generates a signal for chemotatic migration of fibroblast cells. The number of cells migrated close to each bead has been assessed. On-chip cell migration assay showed a remarkable result proving the high efficiency and reliable accuracy in quantitative analysis. Therefore, the device could be extensively used in cell migration assay and other various studies related to cellular movements.

Keywords

References

  1. Caruso, F., R. A. Caruso, and H. Möhwald (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282: 1111-1114. https://doi.org/10.1126/science.282.5391.1111
  2. Caruso, F. (2001) Nanoengineering of particle surfaces. Adv. Mater. 13: 11-22. https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  3. Sun, Y. and Y. Xia (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 74: 5297-5305. https://doi.org/10.1021/ac0258352
  4. Sun, Q., P. C. M. M. Magusin, B. Mezari, P. Panine, R. A. van Santen, and N. A. J. M. Sommerdijk (2005) The formation of gigantic hollow silica spheres from an $EO_{76}-PO_{29}-EO_{76}$/butanol/ethanol/$H_{2}O$ quaternary system. J. Mater. Chem. 15: 256-259. https://doi.org/10.1039/b413363c
  5. Chen, J., F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia (2005) Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5: 473-477. https://doi.org/10.1021/nl047950t
  6. Wang, Z. L. and J. Song (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312: 242-246. https://doi.org/10.1126/science.1124005
  7. Yu, J. G., H. Guo, S. A. Davis, and S. Mann (2006) Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Adv. Funct. Mater. 16: 2035-2041. https://doi.org/10.1002/adfm.200600552
  8. Wan, Y. and D. Zhao (2007) On the controllable softtemplating approach to mesoporous silicates. Chem. Rev. 107: 2821-2860. https://doi.org/10.1021/cr068020s
  9. Fei, J. B., Y. Cui, X. H. Yan, W. Qi, Y. Yang, K. W. Kang, Q. He, and J. B. Li (2008) Controlled preparation of $MnO_{2}$ hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 20: 452-456. https://doi.org/10.1002/adma.200701231
  10. Pu, H., X. Zhang, J. Yuan, and Z. Yang (2009) A facile method for the fabrication of vinyl functionalized hollow silica spheres. J. Colloid Interf. Sci. 331: 389-393. https://doi.org/10.1016/j.jcis.2008.11.037
  11. Schacht, S., Q. Huo, I. G. Voigt-Martin, G. D. Stucky, and F. Schüth (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273: 768-771. https://doi.org/10.1126/science.273.5276.768
  12. Li, Y., J. Shi, Z. Hua, H. Chen, M. Ruan, and D. Yan (2003) Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high Hydrothermal stability. Nano Lett. 3: 609-612. https://doi.org/10.1021/nl034134x
  13. Zhu, Y., J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, and Y. Li (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/ polyelectrolyte multilayer core-shell structure. Angew. Chem. Int. Ed. 44: 5083-5087. https://doi.org/10.1002/anie.200501500
  14. Zhang, H., J. Wu, L. Zhou, D. Zhang, and L. Qi (2007) Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents. Langmuir 23: 1107-1113. https://doi.org/10.1021/la062542l
  15. Lu, Y., H. Fan, A. Stump, T. L. Ward, T. Rieker, and C. J. Brinker (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398: 223-226. https://doi.org/10.1038/18410
  16. Caruso F., R. A. Caruso, and H. Mohwals (1999) Production of hollow microspheres from nanostructured composite particles. Chem. Mater. 11: 3309-3314. https://doi.org/10.1021/cm991083p
  17. Yang, X.-D., J. R. F. Corvalan, P. Wang, C. M.-N. Roy, and C. G. Davis (1999) Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory diseases stages. J. Leukoc. Biol. 66: 401-410. https://doi.org/10.1002/jlb.66.3.401
  18. Maheshwari, G., A. Wells, L. G. Griffith, and D. A. Lauffenburger (1999) Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys. J. 76: 2814-2823. https://doi.org/10.1016/S0006-3495(99)77435-7
  19. Condeelis, J. S., J. B. Wyckoff, M. Bailly, R. Pestell, D. Lawrence, J. Backer, and J. E. Segall (2001) Lamellipodia in invasion. Semin. Cancer Biol. 11: 119-128. https://doi.org/10.1006/scbi.2000.0363
  20. Wells, A., J. Kassis, J. Solava, T. Turner, and D. A. Lauffenburger (2002) Growth factor-induced cell motility in tumor invasion. Acta Oncol. 41: 124-130. https://doi.org/10.1080/028418602753669481
  21. Boyden S. (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115: 453-466. https://doi.org/10.1084/jem.115.3.453
  22. Zigmond, S. H. (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75: 606-616. https://doi.org/10.1083/jcb.75.2.606
  23. Zicha, D., G. A. Dunn, and A. F. Brown (1991) A new direct-viewing chemotaxis chamber. J. Cell Sci. 99: 769-775.
  24. Nelson, R. D., P. G. Quie, and R. L. Simmons (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115: 1650-1656.
  25. Gerisch, G. and H. U. Keller (1981) Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J. Cell Sci. 52: 1-10.
  26. Jeon, N. L., H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20: 826-830. https://doi.org/10.1038/nbt712
  27. Walker, G. M., J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab. Chip 5: 611-618. https://doi.org/10.1039/b417245k
  28. Lin, F., W. Saadi, S. W. Rhee, S. J. Wang, S. Mittal, and N. L. Jeon (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab. Chip 4: 164-167. https://doi.org/10.1039/b313600k
  29. Saadi, W., S. W. Rhee, F. Lin, B. G. Chung, and N. L. Jeon (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic diffusion chamber. Biomed. Microdevices 9: 627-635. https://doi.org/10.1007/s10544-007-9051-9
  30. Keenan, T. M. and A. Folch (2008) Biomolecular gradients in cell culture systems. Lab. Chip 8: 34-57. https://doi.org/10.1039/b711887b
  31. Fenniri, H. and R. Alvarez-Puebla (2007) High-throughput screening flows along. Nat. Chem. Biol. 3: 247-249. https://doi.org/10.1038/nchembio0507-247
  32. El-Ali, J., P. K. Sorger, and K. F. Jensen (2006) Cells on chips. Nature 442: 403-411. https://doi.org/10.1038/nature05063
  33. Yager, P., T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl (2006) Microfluidic diagnostic technologies for global public health. Nature 442: 412-418. https://doi.org/10.1038/nature05064
  34. Huh, D., K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama (2007) Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 6: 424-428. https://doi.org/10.1038/nmat1907
  35. Dittrich, P. S. and A. Manz (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. 5: 210-218. https://doi.org/10.1038/nrd1985
  36. Lee, P. J., P. J. Hung, V. M. Rao, and L. P. Lee (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol. Bioeng. 94: 5-14. https://doi.org/10.1002/bit.20745
  37. Liu, S., J. Rao, X. Sui, P. Cool, E. F. Vansant, G. Van Tendeloo, and X. Cheng (2008) Preparation of hollow silica spheres with different mesostructures. J. Non- Crystalline Solids 354: 826-830. https://doi.org/10.1016/j.jnoncrysol.2007.08.026
  38. Wen, L.-X., Z.-Z. Li, H.-K. Zou, A.-Q. Liu, and J.-F. Chen (2005) Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag. Sci. 61: 583-590. https://doi.org/10.1002/ps.1032