Enzymatic Biodiesel Synthesis from Canola Oil in Liquid Carbon Dioxide

액체 이산화탄소 조건에서의 캐놀라 오일 유래의 효소적 바이오디젤 생산

  • Lee, Myung-Gu (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Cho, Jae-Hoon (Green Engineering Team, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Jun-Hak (Green Engineering Team, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Do-Hoon (Green Engineering Team, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Sang-Yong (Green Engineering Team, Korea Institute of Industrial Technology (KITECH))
  • 이명구 (광운대학교 화학공학과) ;
  • 박철환 (광운대학교 화학공학과) ;
  • 조재훈 (한국생산기술연구원 그린공정연구부) ;
  • 이준학 (한국생산기술연구원 그린공정연구부) ;
  • 이도훈 (한국생산기술연구원 그린공정연구부) ;
  • 김상용 (한국생산기술연구원 그린공정연구부)
  • Received : 2010.07.07
  • Accepted : 2010.08.14
  • Published : 2010.08.31

Abstract

It has been well known that organic solvents like t-butanol and n-hexane can protect lipases from the inhibition by short-chain alcohols in the enzymatic transesterification. However, use of the organic solvents should be minimized considering their negative effects on environment and human health. Therefore, use of the greener solvents has been pursued in various are as including the enzymatic biotranformation. In this study, the liquid carbon dioxide ($LCO_2$) was employed as an alternative media for the enzymatic transesterification of canola oil. The conversion in the $LCO_2$ was comparable with those in organic solvents and the supercritical carbon dioxide, and under optimum conditions, the value reached 99.7%. It is expected that this method can provide a new type of biodiesel production process with higher energy efficiency and lower environmental impact.

액체 이산화탄소를 반응용매로 사용하여 메탄올에 의한 효소 활성이 저해되는 것을 방지하고 친환경적이며 에너지 절감 효과가 우수한 바이오디젤 생산 방법을 제시하고자 유기용매 (t-butanol, acetone, chloroform, hexane, THF, cyclohexane, toluene)와 액체 이산화탄소 비교실험을 통해 액체 이산화탄소가 기타 유기용매와 같은 메탄올 저해를 방지하는 역할을 함으로써 반응 용매로서의 적합함을 확인하였다. 또한 동일이산화탄소를 이용한 초임계 이산화탄소와 비교 실험을 수행하여 초임계 이산화탄소를 이용한 바이오디젤 생산과 유사한 결과를 나타냄으로써 액체 이산화탄소를 이용한 바이오디젤 생산방법이 에너지절약형 친환경 바이오디젤 생산에 더욱 적합함을 확인할 수 있었다. 그리고 액체 이산화탄소상태에서 바이오디젤 생산의 최적화를 통해 고효율 효소는 novozym 435, lipozyme RM IM 및 lipozyme TL IM 중에서 1,3-위치 선택적 특이성을 가진 lipozyme TL IM이 가장 우수함을 확인할 수 있었다. 또한 경제적 최적 조건과 고전환율 최적조건을 도출하여 각각 88.3%, 99.7%의 높은 전환율을 얻었다. 본 연구를 통해 액체 이산화탄소가 메탄올에 의한 효소활성 저해를 방지하는 반응 용매로 적합하며, 지구 온난화의 주요요인인 이산화탄소를 이용할 뿐 아니라 비독성 용매로서 친환경적이며 초임계 이산화탄소 상태보다 에너지 절감효과가 우수하여 효소적 바이오디젤 생산 방법에 새로운 방안을 제시 할 수 있었다.

Keywords

References

  1. Ma, F. and M. A. Hanna (1999) Biodiesel production: a review. Biores. Technol. 70: 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
  2. Srivastara, H. and R. Prasad (2000) Triglycerides-based diesel fuels, Renew. Sust. Energ. Rev. 4: 111-133. https://doi.org/10.1016/S1364-0321(99)00013-1
  3. Fukuda, H., A. Kondo, and H. Noda (2001) Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92: 405-416. https://doi.org/10.1263/jbb.92.405
  4. Lee, D. H., C. H. Park, J. M. Yeo, and S. W. Kim (2006) Lipase immobilization on silica gel using a cross-linking method. J. Ind. Eng. Chem. 12: 777-782.
  5. Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B-Enzym. 17: 133-142. https://doi.org/10.1016/S1381-1177(02)00020-6
  6. Neilsen, P. M., J. Brask, and L. Fjerbaek (2008) Enzymatic biodiesel production: technical and economical considerations. Eur. J. Lipd Sci. Technol. 8: 692.
  7. Ikeda, M. (1992), Public health problems of organic solvents. Toxicol. Lett. 191-201.
  8. Lusas, E. W. and S. R. Gregory (1996) New solvents and extractor. Proceedings of the World Conference on Oilseed and Edible Oils Processing 1: 204-219.
  9. Synder J. M., J. W. King, and M. A. Jackson (1996) Fat content for nutritional labeling by supercritical fluid extracton and on-line lipase catalyzed reaction. J Chromatogr. A. 750: 201-217. https://doi.org/10.1016/0021-9673(96)00354-8
  10. Bamberger, T., J. W. Erickson, C. L. Cooney, and S. K. Kumar (1988) Measurement and model prediction of solubilities of pure fatty acids, pure triglycerides, and mixture of triglycerides in supercritical carbon dioxide. J. Chem. Eng. 327-333.
  11. Lee, J. H., C. H. Kwon, J. W. Kang, C. Park, B. Tae, and S. W. Kim (2009) Biodiesel production from various oils under supercritical fluid condition by candida antartica lipase B using a stepwise reaction method. Appl. Biochem. Biotech. 156: 454-464.
  12. Nelson L. A., T. A. Foglia, and N. M. Marmer (1996) Lipase-catalyzed production of biodiesel. Am. Oil Chem. Soc. 73: 1191-1195. https://doi.org/10.1007/BF02523383
  13. Soumanou M. M. and U. T. Bornscheuer (2003) Lipasecatalyzed alcoholysis of vegetable oils. Eur. J. Lipd Sci. Technol. 105: 656-660. https://doi.org/10.1002/ejlt.200300871
  14. Li, L., W. Du, D. Liu, L. Wang, and Z. Li (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B Enzym. 43: 58-62. https://doi.org/10.1016/j.molcatb.2006.06.012
  15. Damar, S. and M. O. Balaban (2006) Review of dense phase $CO_{2}$ technology: microbial and enzyme inactivation, and effects on food quality. J. Food Sci. 71: R1-R11. https://doi.org/10.1111/j.1365-2621.2006.tb12397.x
  16. Garcia, S., N. M. T. Lourenco, D. Lousa, A. F. Swqueira, P. Mimoso, J. M. S. Cabral, C. A. M. Afonso, and S. Barreiros (2004) A comparative study of biocatalysis in non-conventional solvents: Ionic liquids, supercritical fluids and organic media. Green Chem. 6: 466-470. https://doi.org/10.1039/b405614k
  17. Lozano, P., G. Villora, D. Gomez, A. B. Gayo, J. A. Sanchez-Conesa, M. Rubio, and J. L. Iborra (2004) Membrane reactor with immobilized candida antartica lipase B for ester synthesis in supercritical dioxide. J. Supercrit. Fluids. 29: 121-128. https://doi.org/10.1016/S0896-8446(03)00050-0
  18. Mardras, G., C. Kolluru, and R. Kumar (2004) Synthesis of biodiesel in supercritical fluids. Fuel. 83: 2029-2033. https://doi.org/10.1016/j.fuel.2004.03.014
  19. Varma, M. N. and G. Madras (2007) Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind. Eng. Chem. Res. 46: 1-6. https://doi.org/10.1021/ie0607043