• 제목/요약/키워드: Microcrystalline Si

검색결과 80건 처리시간 0.025초

Effects of Si cluster incorporation on properties of microcrystalline silicon thin films

  • Kim, Yeonwon;Yang, Jeonghyeon;Kang, Jun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.181-181
    • /
    • 2016
  • Hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films have attracted much attention as materials of the bottom-cells in Si thin film tandem photovoltaics due to their low bandgap and excellent stability against light soaking. However, in PECVD, the source gas $SiH_4$ must be highly diluted by $H_2$, which eventually results in low deposition rate. Moreover, it is known that high-rate ${\mu}c-Si:H$ growth is usually accompanied by a large number of dangling-bond (DB) defects in the resulting films, which act as recombination centers for photoexcited carriers, leading to a deterioration in the device performance. During film deposition, Si nanoparticles generated in $SiH_4$ discharges can be incorporated into films, and such incorporation may have effects on film properties depending on the size, structure, and volume fraction of nanoparticles incorporated into films. Here we report experimental results on the effects of nonoparticles incorporation at the different substrate temperature studied using a multi-hollow discharge plasma CVD method in which such incorporation can be significantly suppressed in upstream region by setting the gas flow velocity high enough to drive nanoparticles toward the downstream region. All experiments were performed with the multi-hollow discharge plasma CVD reactor at RT, 100, and $250^{\circ}C$, respectively. The gas flow rate ratio of $SiH_4$ to $H_2$ was 0.997. The total gas pressure P was kept at 2 Torr. The discharge frequency and power were 60 MHz, 180 W, respectively. Crystallinity Xc of resulting films was evaluated using Raman spectra. The defect densities of the films were measured with electron spin resonance (ESR). The defect density of fims deposited in the downstream region (with nonoparticles) is higher defect density than that in the upstream region (without nanoparticles) at low substrate temperature of RT and $100^{\circ}C$. This result indicates that nanoparticle incorporation can change considerably their film properties depending on the substrate temperature.

  • PDF

원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성 (The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition)

  • 김도영
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.320-323
    • /
    • 2018
  • SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구 (Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture)

  • 양여경;박성환;김한나;황기섭;하기룡
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.60-67
    • /
    • 2017
  • 본 연구에서는 생분해성인 microcrystalline cellulose (MCC)를 표면 개질하여 음식포장재로 사용하는 polyethylene (PE) 복합체의 충전제로 사용하기 위한 사전 연구를 수행하였다. 1 분자 당 1 차 아미노기 1개와 2차 아미노기 2개씩을 가지는 실란커플링제인(3-trimethoxysilylpropyl)diethylenetriamine (TPDT)를 사용하여 MCC 표면에 이산화탄소 흡착 기능이 있는 아미노기를 도입하였다. TPDT 도입량, 팽윤시간, 반응온도 및 반응시간과 같은 다양한 반응 조건들을 변화시켜 각각의 반응조건의 변화가 MCC 표면 개질 정도에 미치는 영향을 연구하였다. MCC 표면에 접목된 TPDT의 양 및 화학결합생성을 Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) 및 고체 상태 $^{29}Si$ nuclear magnetic resonance (NMR)법을 사용하여 분석하였다. 반응시간, 반응온도 및 TPDT 도입량이 증가할수록 MCC 표면에 접목되는 TPDT 양이 증가함을 확인하였다.

Metal-assisted grown Si films and semiconducting nanowires for solar cells

  • 김준동
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.13-13
    • /
    • 2010
  • The solar energy conversion will take 10 % global energy need by 2033. A thin film type solar cell has been considered as one of the promising candidates for a large area applicable solar cell fabrication at a low cost. The metal-assisted growth of microcrystalline Si (mc-Si) films has been reported for a quality Si film synthesis at a low temperature. It discusses the spontaneous growth of a Si film above a metal-layer for a thin film solar cell. Quite recently, a substantial demand of nanomaterials has been addressed for cost-effective solar cells. The nanostructure provides a large photoactive surface at a fixed volume, which is an advantage in the effective use of solar power. But the promising of nanostructure active solar cell has not been much fulfilled due mainly to the difficulty in architecture of nanostructures. We present here the Si nanowire (SiNW)-embedded Schottky solar cell. Multiple SiNWs were connected to two different metals to form a Schottky or an ohmic contact according to the metal work function values. It discusses the scheme of rectifying contact between metals and SiNWs and the SiNW-embedded Schottky solar cell performances.

  • PDF

Micromorph Schottky Silicon Solar Cells

  • 김준동;한창수;윤주형;이준신;박윤창
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.130-130
    • /
    • 2010
  • Thin Si films were grown by a plasma-enhanced chemical vapor deposition (PECVD, SNTEK, Korea) system. Two different deposition condition were applied and formed a fully amorphous Si (a-Si) film and a micromorph mixing of microcrystalline Si (mc-Si) and a-Si film. Under one sun illumination, the micromorph device provided the enhanced open circuit voltage and fill factor values. It presents the fabrication of the micromorph Si film and the a-Si film by modulating a deposition condition. The performances of the Si thin film Schottky solar cells are discussed.

  • PDF

Electrical Analysis of Bottom Gate TFT with Novel Process Architecture

  • Pak, Sang-Hoon;Jeong, Tae-Hoon;Kim, Si-Joon;Kim, Kyung-Ho;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • 제9권2호
    • /
    • pp.5-8
    • /
    • 2008
  • Bottom gate thin film transistors (TFTs) with microcrystalline and amorphous Si (a-Si) double active layers (DAL) were fabricated. Since the process of DAL TFTs can use that of conventional a-Si TFTs, these DAL TFT process has advantages, such as low cost, large substrate, and mass production capacity. In order to analyze the degradation characteristics in saturation region for driving TFTs of active matrix organic light emitting diode, three different dynamic stresses were applied to DAL TFTs and a-Si TFTs. The threshold voltage shift of DAL TFTs and a-Si TFTs during 10,000 second stress is 0.3V and 2V, respectively. DAL TFTs were more reliable than a-Si TFTs.

27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구 (Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz)

  • 이기세;김선규;김선영;김상호;김건성;김범준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지 ([ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells)

  • 이정철;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • 조재현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

급랭응고한 Al-Fe-V-Si계 합금의 미세조직과 열안정성에 관한 연구 (Microstuctures and Themal Stability of Rapidly Solidified Al-Fe-V-Si-(Mn) Alloys)

  • 김선화;박원욱
    • Applied Microscopy
    • /
    • 제21권2호
    • /
    • pp.57-66
    • /
    • 1991
  • The main purpose of this paper was to investigate the change of rapidly solidified microstructures and dispersoid behavior according to heat-treatment in the Al-Fe-V-Si-(Mn) alloys. It was found that (111) preferred orientation identified by X-ray diffraction and fine subgrain/large grain were observed in the rapidly solidified Al-Fe-V-Si-(Mn) alloys. Cell boundary of the zone A was composed of the microcrystalline, whereas that of the zone B was amorphous. Decomposition of the Al-Fe-V-Si-(Mn) alloys occurred at about $300^{\circ}C$. These alloys exhibited excellent thermal stability at the elevated temperature. Microstructure of the zone B was more stable than that of the zone A. The spherical dispersoid and 5-fold symmetry phase was also more thermally stable than the amorphous structure of cell boundary.

  • PDF