• Title/Summary/Keyword: Microcosm

Search Result 145, Processing Time 0.026 seconds

Algicidal Effect of Immobilized Bacteria against S. hantzschii in Microcosm (살조세균 Pseudomonas fluorescens HYK0210-SK09의 두 가지 담체 포집능과 이를 이용한 microcosm에서 Stephanodiscus hantzschii (Bacillariophyceae)의 살조능 연구)

  • Jung, Seung-Won;Kim, Young-Ok;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • To assess the algicidal effect of a bacterium, Pseudomonas fluorescens HYK0210-SK09 (SK09), attached to activated carbon polyvinyl alcohol (ACPA) and cellulose sponge (CS) carriers against Stephanodiscus hantzschii, the present study was carried out in an indoor-microcosm. As comparing immobilization effects of two carriers, the ACPA carrier allowed for higher packing cell density of SK09 compared to the CS carrier. In the microcosm, immobilized SK09 cells were applied to control S. hantzschii blooms. Immobilized SK09 cells exhibited a species-specific activity towards the diatom, showing an algicidal effect up to 72% attached by ACPA carriers and to 51% attached by CS carriers. In particular, a level of conductivity treated with ACPA carriers was decreased than that of CS carriers. The present study clearly demonstrates that ACPA-immobilized SK09 cells could effectively control S. hantzschii blooms and improve water quality in the microcosm ecosystem.

Analysis of the Changes in Metabolic Diversity of Microbial Community in pH-gradient Microcosm

  • Ahn, Young-Beom;Cho, Hong-Bum;Park, Yong-Keel
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • The Biolog redox technology was carried out for evaluation of acidification effect on microbial communities at each stage of pH gradient microcosm. While the number of heterotrophic bacterial population and activities of extracellular enzyme decreased as the pH decreased, the number of total bacteria in the microcosm was not affected. The average color development of sample at each pH-gradient showed a sigmoidal curve, and at higher pH, more overall color development appeared in Biolog plates. Average color development value in Biolog plates was stabilized at 50 hours as an optimum incubation time. The color production in the Biolog plates was caused by cell density at above pH 5.0, but by cell activity below pH 4.0. Principal component analysis of color responses revealed distinctive patterns among the pH-gradient microcosm samples.

  • PDF

Microcosm Studies of Nanomaterials in Water and Soil Ecosystems (수생태 및 토양생태계에서 나노물질의 마이크로코즘 연구)

  • Yoon, Sung-Ji;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2012
  • The current growth of nano-industries has resulted in released nanoparticles entering into water and soil ecosystems via various direct or indirect routes. Physicochemical properties of nanoparticles differ from bulk materials, and nanomaterials influence the fates of nanoparticles and the interactions of living or non-living things in the environment. Microcosm analysis is a research methodology for revealing natural phenomena by mimicking part of an ecosystem under controlled conditions. Microcosm study allows for the integrated analysis of toxic effects and fates of nanoparticles in the ecosystem. Ecotoxicity studies of nanomaterials are steadily increasing, and microcosm studies of nanomaterials are currently beginning to surface. In this study, microcosm studies of nanomaterials in water and soil ecosystems were extensively investigated based on SCI(E) papers. We found that the microcosm studies have been reported in 12 instances, and mesocosm studies have been reported in only once until now. Advanced research was mostly evaluated at the microorganism level. But integrated analysis of nanotoxicity is required to research the interactions based of various species. Thus, our studies analysed the trend of microcosm studies on nanomaterials in water and soil ecosystems and suggested future directions of microcosm research of nanomaterials.

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

Aquifer Microcosm Test for BTEX Biodegradation (Aquifer Microcosm 실험을 통한 BTEX 생분해에 관한 연구)

  • 박재형;권수열;고석오;최의소
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.163-166
    • /
    • 2000
  • The purpose of this study is to evaluate substrate interactions of BTEX for multicomponent. Although BTEX compounds have similar chemical structures, biodegradation of individual BTEX is different with the present of certain BTEX compounds. The biodegradation rate is order to Benzene=Toluene>Ethylbenzene> m, p-Xylene>o-Xylene. Xylenes is stimulated when benzene or toluene is present. Especially o-xylene Inhibit other BTEX compounds.

  • PDF

Comparison of a Microbiological Model Simulation with Microcosm Data

  • Lee, Jae-Young;Tett, Paul;Jones, Ken
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.222-233
    • /
    • 2004
  • Using nitrogen as the limiting nutrient, the default version of a microplankton-detritus model linked chlorophyll concentration to the autotroph nitrogen. However, phosphorus dynamics were added to simulate the results of a microcosm experiment. Using standard parameter values with a single value of microheterotroph fraction in the microplankton taken from the observed range, the best simulation successfully captured the main features of the time-courses of chlorophyll and particulate organic carbon, nitrogen and phosphorus, with root-mean-square error equivalent to 29% of particulate concentration. A standard version of microbiological model assumes complete internal cycling of nutrient elements; adding a term for ammonium and phosphate excretion by microheterotrophs did not significantly improve predictions. Relaxing the requirement for constant microheterotroph fraction resulted in an autotroph-heterotroph model AH, with dynamics resembling those of a Lotka-Volterra predator-prey system. AH fitted the microcosm data worse than did MP, justifying the suppression of Lotka-Volterra dynamics in MP. The paper concludes with a discussion of possible reasons for the success of the simple bulk dynamics of MP in simulating microplankton behaviour.

Microbial Community in Various Conditions of Soil Microcosm (벤젠과 톨루엔 분해에 적합한 미소환경과 토착미생물군의 분포변화)

  • 이한웅;이상현;이정옥;김현국;이수연;방성호;백두성;김동주;박용근
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • Biological treatment of benzene and toluene contaminated soil was investigated in laboratory microcosm of 16 different types for degrading benzene and toluene by indigenous bacteria. At the experimental conditions of the microcosms fast degrading benzene and toluene, moisture contents were 30% and 60% in a soil gap and content of powdered-activated carbon(PCA) for adhesion of benzene and toluene-degrading bacteria was 1% in total soil mass. At the conclusion of the shifted bacteria community, Case 6 and case 7 were operated until 10 days, and then the total cell number and the number of benzene and toluene degrading bacteria were investigated. The total cell number of Case 6 and Case 7 increased 488 fold and 308 fold of total indigenous cell, respectively. The number of benzene and toluene degrading bacteria increased and maintained the percentages occupied in pre-operating microcosm. Species of benzene and toluene degrading bacteria in microcosm changed from species of Gram negative bacteria to Gram positive bacterial species after soil exposed to benzene and toluene.

  • PDF

A Study on the Toxicity Assessment of Plating Wastewater using Aquatic Microcosm (수계 Microcosm을 이용한 도금폐수의 독성평가)

  • 위성욱;도삼유평;조경;나명석;이종빈
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.256-262
    • /
    • 2002
  • This research investigated experimentally on the population growth in the aquatic microcosm with the wastewater of plating factory. The purpose of this study was to evaluate the effect of culture conditions of the characteristic growth pattern of the examined species. Population of the system is consists of three organisms; Chlorella vulgaris as a producer, Cyclidium glaucoma as a consumer and Pseudomonas putida as a decomposer. The different growth patterns of each population are followed by surfactant type; Especially C. glaucoma was sensitive, Ch. uvlgaris was maintained population size stably even at high level of surfactant and p. putida was not significantly affected. After treatment of waste water from plating factory, it began to be affected at 1.0% solution treatment to Ch. vulgaris which the cell number was decreased prominently after 2 days, and C. glaucoma was disappeared at 2.5% solution treatment. P. putida was showed increasing pattern according to treatment concentration, at 2.5% solution and population size grew double. The result from current microcosm study indicates that this model system can be applied to environmental assessment method for various pollutants.

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.