DOI QR코드

DOI QR Code

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments

해양유류오염정화를 위한 유류분해 미생물제제의 평가

  • Sohn, Jae-Hak (Department of Bio-food material, College of Medical & Life Sciences, Silla University)
  • 손재학 (신라대학교 의생명과학대 바이오식품소재학과)
  • Received : 2011.09.27
  • Accepted : 2011.11.17
  • Published : 2011.11.30

Abstract

To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

유류분해에 있어 혼합미생물제제의 효과를 평가하기 위해 미생물제제의 처리성능과 microcosm test를 수행하였다. 유류분해세균은 0.5% Arabian heavy crude oil을 유일 탄소원으로 제공된 최소배지를 이용한 연속적인 농후배양을 통하여 분리하였다. 우수 유류분해 미생물조합인 3종의 균주(BS1, BS2, BS4)는 MSM배지에서 5일의 배양기간 동안 지방족 탄화수소를 48.4%, 방향족 탄화수소를 30.5% 생분해하였다. 처리성능 및 microcosm test는 Arabian heavy crude oil을 첨가한 후 3가지 처리조건인 무처리, 무기영양염처리 그리고 무기영양염 및 혼합미생물처리조건에서 유류화합물의 생물분해에 미치는 영향을 조사하였다. 무기영양염처리구와 무기영양염 및 혼합미생물처리구에서 지방족 탄화수소의 분해율은 실험기간 동안 유의하게 향상되었으며 두 실험구간 유의한 차이는 관찰되지 않았다. 그러나 무기영양염 및 혼합미생물처리구에서 방향족 탄화수소의 생분해율은 무기영양염제만을 처리한 시험구와 비교하여 처리성능 시험의 경우 50% 그리고 microcosm test의 경우 13%를 향상시켰다. 본 연구의 결과로부터 혼합미생물제제는 실험실, 처리성능 및 microcosm test에서 지방족뿐만 아니라 방향족 탄화수소의 생물분해를 촉진하였다. 특히 혼합미생물제제는 방향족 탄화수소의 제거를 위한 생물정화기술의 적용에 있어 유용한 도구로 판단된다.

Keywords

References

  1. Aldrett, S., J. S. Bonner, T. J. McDonalds, M. A. Mills, and R. L. Autenrieth. 1997. Degradation of crude oil enhanced by commercial microbial cultures. Proceedings of the 1997. Oil Spill Conference. American Petroleum Institute. Washington. DC.
  2. Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, San Diego.
  3. Altas, R. M. 1981. Microbial degradation of petroleum hydrocarbon: An environmental perspective. Microbial Rev. 45, 120-209.
  4. Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresource Technology 74, 63-67. https://doi.org/10.1016/S0960-8524(99)00144-3
  5. Choi, S. C., K. K. Kwon, J. H. Sohn, and S. J. Kim. 2002. Evaluation of fertilizer additions to stimulate oil bioremediation in sand seashore mesocosms. J. Microbiol. Biotechnol. 12, 431-436.
  6. Forsyth., J. V., Y. M. Tsao, and R. D. Blem. 1995. Bioremediation: when is augmentation needed, pp. 1-44, In Hinchee, R.E. et al. (eds.), Bioaugmentation for site remediation. Battelle Press, Columbus, OH.
  7. Glaser, J. A., A. D. Venisa, and E. J. Opatken. 1991. Development and evolution of application techniques for delivery of nutrients to contamined shoreline in Prince William Sound. Proceedings of 1989 International Oil Spill Conference. American Petroleum Institute. Washington DC., USA.
  8. Head, L. M. and R. P. J. Swannell. 1999. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 10, 234-239. https://doi.org/10.1016/S0958-1669(99)80041-X
  9. Kim, S. J. 2002. Research for the form approval procedure of oil spill bioremediation agent. Korea Coast Guard
  10. Kim, S. J., J. H. Sohn, D. S. Sim, K. K. Kwon, and T. H. Kim. 1998. The effects of bioremediation on the oil bioremediation in oil polluted environments, pp. 181-188, In Le Gal, Y. and H.O. Halvorson (eds.), New developments in marine biotechnology, plenum Press. New York.
  11. Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbial Rev. 53, 305-315.
  12. Lee, K. and E. M. Levy. 1987. Enhanced biodegradation of a light crude oil in sandy beaches. Proceedings of the 1987 Oil Spill Conference. American Petroleum Institute. Washington. DC.
  13. Lee, K. and E. M. Levy. 1989. Enhancement of the natural biodegradation of condensate and crude oil on beaches of Altantic Canada. Proceedings of the 1989 Oil Spill Conference. American Petroleum Institute. Washington. DC.
  14. Lee, K., G. H. Tremblay, and E. M. Levy. 1993. Bioremediation: Application of slow-release fertilizers on low-energy shoreline. Proceedings of 1993 International Oil Spill Conference, American Petroleum Institute. Washington DC., USA.
  15. Marty, P. and Y. Martin. 1996. Seed and feed strategy against oil spills in a marine environment: laboratory and simulated outdoor experiments with selected natural bacterial strain. J. Mar. Biotechnol. 4, 155-158.
  16. Oh, Y. S., D. S. Sim, and S. J. Kim. 2001. Effects of nutrients on crude oil biodegradation in the upper intertidal zone. Mar. Pollut. Bull. 42, 1367-1372. https://doi.org/10.1016/S0025-326X(01)00166-7
  17. Ortega-Calvo, J. J. and C. Saiz-Jimenez. 1998. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl. Environ. Microbiol. 64, 3123-3126.
  18. Rosenberge, E., R. Legmann, A. Kushmaro, R. Taube, E. Adler, and E. Z. Ron. 1992. Petroleum bioremediation- A multiphase problem. Biodegradation 3, 337-350. https://doi.org/10.1007/BF00129092
  19. Safferman, S. I. 1991. Selection of nutrients to enhance biodegradation for the remediation of oil spilled on beaches. Proceedings of 1991 International Oil Spill Conference, American Petroleum Institute. Washington DC..
  20. Sim, D. S., J. H. Sohn, and S. J. Kim. 1998. Microcosm study for bioremediation of oil-contaminated pebble environments. Korean J. Microbial. 34, 101-107.
  21. Sohn, J. H., K. K. Kwon, and S. J. Kim. 2003. Effects of Slow Release Fertilizer and Dispersant on the Biodegradation of oil contaminated in sand seashore mesocosm. Korean J. Microbiol. 39, 8-15.
  22. Tagger, S., A. Bianchi, M. Juillard, J. LePetit, and B. Roux. 1983. Effect of microbial seeding of crude oil in seawater in a model system. Mar. Biol. 78, 13-20. https://doi.org/10.1007/BF00392966
  23. Vacca, D. J., W. F. Bleam, and W. J. Hickey. 2005. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl. Environ. Microbiol. 71, 3797-3805. https://doi.org/10.1128/AEM.71.7.3797-3805.2005
  24. Venosa, A. D., J. R. Haines, W. Nisamaneepong, R. Govind, S. Pradhan, and B. Siddique. 1991. Protocol for testing bioremediation products against weathered Alaskan crude oil. Proceedings of the 1991 Oil Spill Conference. American Petroleum Institute. Washington. DC.
  25. Venosa, A. D., M. T. Suidan, B. A. Wrenn, K. L., Strohmeier, J. R. Haines, A. L, Eberhart, D. King, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Technol. 30, 1764-1775. https://doi.org/10.1021/es950754r
  26. Zimmerman, R. 1977. Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy, pp. 103-120, In Rheinheimer, G. (ed.), Microbial ecology of brackish water environment. Springer-Verlag, Berlin.

Cited by

  1. The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption vol.21, pp.3, 2016, https://doi.org/10.7857/JSGE.2016.21.3.014