• 제목/요약/키워드: Microbial-dependent metabolites

검색결과 4건 처리시간 0.017초

The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health

  • Thi Van Anh Bui;Hyesoo Hwangbo;Yimin Lai;Seok Beom Hong;Yeon-Jik Choi;Hun-Jun Park;Kiwon Ban
    • Korean Circulation Journal
    • /
    • 제53권8호
    • /
    • pp.499-518
    • /
    • 2023
  • Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.

Effect of Acaromyces Ingoldii Secondary Metabolites on the Growth of Brown-Rot (Gloeophyllum Trabeum) and White-Rot (Trametes Versicolor) Fungi

  • Olatinwo, Rabiu;So, Chi-Leung;Eberhardt, Thomas L.
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.506-511
    • /
    • 2019
  • We investigated the antifungal activities of an endophytic fungus identified as Acaromyces ingoldii, found on a loblolly (Pinus taeda L.) pine bolt in Louisiana during routine laboratory microbial isolations. The specific objectives were to determine the inhibitory properties of A. ingoldii secondary metabolites (crude extract) on the mycelial growth of a brown-rot fungus Gloeophyllum trabeum and a white-rot fungus Trametes versicolor, and to determine the effective concentration of A. ingoldii crude preparation against the two decay fungi in vitro. Results show the crude preparation of A. ingoldii from liquid culture possesses significant mycelial growth inhibitory properties that are concentration dependent against the brownrot and white-rot fungi evaluated. An increase in the concentration of A. ingoldii secondary metabolites significantly decreased the mycelial growth of both wood decay fungi. G. trabeum was more sensitive to the inhibitory effect of the secondary metabolites than T. versicolor. Identification of specific A. ingoldii secondary metabolites, and analysis of their efficacy/specificity warrants further study. Findings from this work may provide the first indication of useful roles for Acaromyces species in a forest environment, and perhaps a future potential in the development of biocontrol-based wood preservation systems.

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

Citrinin Hydrate Inhibit Serotonin N-Acetyltransferase Catalyzing the Conversion of Serotonin to N-Acetylserotonin

  • Lee, In-Kyoung;Yun, Bong-Sik;Kim, Kyong-Tai;Choi, Bo-Hwa;Park, Tae-Ju;Kim, Young-Ho;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1099-1101
    • /
    • 2001
  • In an attempt to search for serotonin N-acetyltransferase (arylalkylamine N-acetyltransferasem, AA-NAT) inhibitors from microbial metabolites, we fecund the culture broth of Penicillium sp. 80722 which showed a strong inhibitory activity against AA-NNT. The active principle has been identified as citrinin hydrate through bioassay-guided fractionation of cultural broth, and structure elucidation derived by spectroscopic analyses. Citrinin hydrate inhibits AA-NAT with an $IC_50$ value of $173{\mu}M$ in a dose-dependent manner. Although citrinin hydrate was previously isolated as human rhinovirus 3C-protease inhibitor, this was recognized as the first AA-NAT inhibitor isolated from natural sources.

  • PDF