DOI QR코드

DOI QR Code

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Park, Inah (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Doyeon (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Jeongah (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Jang, Sangwon (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Choi, Mijung (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Choe, Han Kyoung (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Kyungjin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2019.12.10
  • Accepted : 2020.02.10
  • Published : 2020.03.31

Abstract

Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

Keywords

References

  1. Abot, A., Cani, P.D., and Knauf, C. (2018). Impact of Intestinal peptides on the enteric nervous system: novel approaches to control glucose metabolism and food intake. Front. Endocrinol. 9, 323. https://doi.org/10.3389/fendo.2018.00323
  2. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915-1920. https://doi.org/10.1126/science.1104816
  3. Bonaz, B., Bazin, T., and Pellissier, S. (2018). The vagus nerve at the interface of microbiota-gut-brain axis. Front. Neurosci. 12, 49. https://doi.org/10.3389/fnins.2018.00049
  4. Buhr, E.D., Yoo, S.H., and Takahasi, J.S. (2010). Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379-385. https://doi.org/10.1126/science.1195262
  5. Chen, H., New, P.K., Rosen, C.E., Bielecka, A.A., Kuchroo, M., Cline, G.W., Kruse, A.C., Ring, A.M., Crawford, J.M., and Palm, N.W. (2019). A forward chemical genetic screen reveals gut microbiota metabolites that modulates host physiology. Cell 177, 1217-1231. https://doi.org/10.1016/j.cell.2019.03.036
  6. Cryan, J.F. and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of gut microbiota on brain and behavior. Nat. Rev. Neurosci. 13, 701-712. https://doi.org/10.1038/nrn3346
  7. Dodd, D., Spitzer, M., Van Treuren, W., Merrill, B., Hryckowian, A., and Higginbottom, S. (2017). A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648-652. https://doi.org/10.1038/nature24661
  8. Eastman, C.R., Suh, C., Tomaka, V.A., and Crowley, S.J. (2015). Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans. Sci. Rep. 5, 8381. https://doi.org/10.1038/srep08381
  9. Elsden, S.R., Hilton, M.G., and Waller, J.M. (1976). The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 107, 283-288. https://doi.org/10.1007/BF00425340
  10. Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., Zhu, M., Li, J., and Li, N. (2017). Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15, 1-9. https://doi.org/10.1186/s12967-016-1111-6
  11. Honma, S. (2018). The mammalian circadian system: a hierarchical multioscillator structure for generating circadian rhythm. J. Physiol. Sci. 68, 207-219. https://doi.org/10.1007/s12576-018-0597-5
  12. Jones, M.J. (2014). CODEX-aligned dietary fiber definitions help to bridge the 'fiber gap'. Nutr. J. 13, 34. https://doi.org/10.1186/1475-2891-13-34
  13. Kim, S., Kim, H., Yim, Y.S., Ha, S., Atarashi, K., Tan, T.G., Longman, R.S., Honda, K., Littman, D.R., Choi, G.B., et al. (2017). Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528-532. https://doi.org/10.1038/nature23910
  14. Koo, J., Choe, H.K., Kim, H.D., Chun, S.K., Son, G.H., and Kim, K. (2015). Effect of mefloquine, a gap junction blocker, on circadian period2 gene oscillation in the mouse suprachiasmatic nucleus ex vivo. Endocrinol. Metab. 30, 361-370. https://doi.org/10.3803/EnM.2015.30.3.361
  15. Krishnan, S., Alden, N., and Lee, K. (2015). Pathways and functions of gut microbiota metabolism impacting host physiology. Curr. Opin. Biotechnol. 36, 137-145. https://doi.org/10.1016/j.copbio.2015.08.015
  16. Lee, J., Lee, S., Chung, S., Park, N., Son, G.H., An, H., Jang, J., Chang, D.H., Suh, Y.G., and Kim, K. (2016). Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem. Biophys. Res. Commun. 469, 580-586. https://doi.org/10.1016/j.bbrc.2015.12.030
  17. Leone, V., Gibbons, S.M., Martinez, K., Hutchison, A.L., Huang, E.Y., Cham, C.M., Pierre, J.F., Heneghan, A.F., Nadimpalli, A., Hubert, N., et al. (2015). Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681-689. https://doi.org/10.1016/j.chom.2015.03.006
  18. Liang, X. and Fitzgerald, G.A. (2017). Timing the microbes: the circadian rhythm of gut microbiome. J. Biol. Rhythms. 32, 505-515. https://doi.org/10.1177/0748730417729066
  19. Lund, M.L., Egerod, K.L., Engelstoft, M.S., Dmytriyeva, O., Theodorsson, E., Patel, B.A., and Schwarts, T.W. (2018). Enterochromaffin 5-HT cells - a major target for GLP-1 and gut microbial metabolites. Mol. Metab. 11, 70-83. https://doi.org/10.1016/j.molmet.2018.03.004
  20. Makki, K., Deehan, E.C., Walter, J., and Backhed, F. (2018). The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705-715. https://doi.org/10.1016/j.chom.2018.05.012
  21. Mukherji, A., Kobiita, A., Ye, T., and Chambon, P. (2013). Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153, 812-827. https://doi.org/10.1016/j.cell.2013.04.020
  22. Nakajima, Y., Yamazaki, T., Nishii, S., Noguchi, T., Hoshino, H., Niwa, K., Viviani, V.R., and Ohmiya, Y. (2010). Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLoS One 5, e10011. https://doi.org/10.1371/journal.pone.0010011
  23. Parkar, S.G., Kalsbeek, A., and Cheeseman, J.F. (2019). Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms 7, E41. https://doi.org/10.3390/microorganisms7020041
  24. Refinetti, R. (2016). Circadian Physiology (Florida: CRC Press).
  25. Rensing, L. and Ruoff, P. (2002). Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobio. Int. 19, 807-864. https://doi.org/10.1081/CBI-120014569
  26. Sgritta, M., Dooling, S.W., Buffington, S.A., Momin, E.N., Francis, M.B., Britton, R.A., and Costa-Mattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246-259. https://doi.org/10.1016/j.neuron.2018.11.018
  27. So, A.Y., Bernal, T.U., Pillsbury, M.L., Yamamoto, K.R., and Feldman, B.J. (2009). Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl. Acad. Sci. U. S. A. 106, 17582-17587. https://doi.org/10.1073/pnas.0909733106
  28. Stoppini, L., Buchs, P., and Muller, D. (1991). A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173-182. https://doi.org/10.1016/0165-0270(91)90128-M
  29. Tahara, Y., Yamazaki, M., Sukigara, H., Motohashi, H., Sasaki, H., Miyakawa, H., Haragu-chi, A., Ikeda, Y., Fukuda, S., and Shibata, S. (2018). Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci. Rep. 8, 1395. https://doi.org/10.1038/s41598-018-19836-7
  30. Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164-179. https://doi.org/10.1038/nrg.2016.150
  31. Thaiss, C.A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A., and Elinav, E. (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514-529. https://doi.org/10.1016/j.cell.2014.09.048
  32. Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Vazquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., et al. (2018). HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 4, D608-D617.
  33. Wright, K.P., Jr., McHill, A.W., Birks, B.R., Griffin, B.R., Rusterholz, T., and Chinoy, E.D. (2013). Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 23, 1554-1558. https://doi.org/10.1016/j.cub.2013.06.039
  34. Yoo, S.H., Kojima, S., Shimomura, K., Koike, N., Buhr, E.D., Furukawa, T., Ko, C.H., Gloston, G., Ayoub, C., Nohara, K., et al. (2017). Period2 3'-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proc. Natl. Acad. Sci. U. S. A. 114, E8855-E8864. https://doi.org/10.1073/pnas.1706611114
  35. Yoo, S.H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka, S.M., Hong, H.K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U. S. A. 101, 5339-5346. https://doi.org/10.1073/pnas.0308709101
  36. Zielinski, T., Moore, A.M., Troup, E., Halliday, K.J., and Millar, A.J. (2014). Strengths and limitations of period estimation methods for circadian data. PLoS One 9, e96462. https://doi.org/10.1371/journal.pone.0096462

Cited by

  1. Circadian Host-Microbiome Interactions in Immunity vol.11, 2020, https://doi.org/10.3389/fimmu.2020.01783
  2. Night-Restricted Feeding Improves Gut Health by Synchronizing Microbe-Driven Serotonin Rhythm and Eating Activity-Driven Body Temperature Oscillations in Growing Rabbits vol.11, 2021, https://doi.org/10.3389/fcimb.2021.771088