• 제목/요약/키워드: Microbial metabolites

검색결과 167건 처리시간 0.029초

Effects of Bacillus polyfermenticus SCD Administration on Fecal Microflora and Putrefactive Metabolites in Healthy Adults

  • Park, Kyu-Yong;Jung, Hwang-Yeong;Woo, Kang-Lyung;Jun, Kyoung-Dong;Kang, Jae-Seon;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.657-663
    • /
    • 2002
  • Probiotics have been suggested to improve gastrointestinal health in humans. To investigate the effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in humans, Bacillus polyfermenticus SCD (4.00${\times}$10$\sub$5/ CFU/mg) was administrated to ten healthy subjects (5 men and 5 women, average age 24 years) three times a day for 2 weeks. Fecal samples were collected before (1st and 2nd weeks, control), during (3rd and 4th weeks), and 2 weeks after the administration. The fo11owing microbial groups were evaluated in the feces: aerobic and anaerobic bacteria, Bacillus polyfermenticus SCD, Lactobacillus, Bifidobacterium, total lactic acid bacteria, Salmonella, Clostridium, Clostridium perfringens, Eubacterium, Staphylococcus, Coliform bacteria, Pseudomunas, and Yeast. Fecal concentrations of total aerobic bacteria (p<0.05, p<0.01, 3rd and 4th weeks), total lactic acid bacteria (p<0.01, 3rd, 4th and 5th weeks), and Bifidobacteria (p<0.05, 4th and 5th weeks) were significantly increased in all subjects, compared to the control, from the 3rd week after the administration of the products. Clostridium (p<0.01, 4th week), Clostridium perfringens (p<0.05, p<0.01, 3rd and 4th weeks), and coliform (p<0.01,5th week) were significantly reduced from the 3rd week of administration. No significant changes in the fecal concentrations of Pseudomonas, Lactobacillus, Eubacterium, Staphylococcus, yeast, and total anaerobes were observed. Six weeks after the administration, the concentration of all rnicroorganlsrns returned to the basal level. Bacillus polyfermenticus SCD was significantly maintained from the 3rd week to 6th week of the study. Despite the absence of a statistical significance, the putrefactive metabolites (ammonia, indole, skatole, and $\rho$-cresol) and the pH value tended to be lower during and after the test periods than the base line. These results show that this probiotic preparation is able to colonize the intestine, and suggest that it may be useful as a beneficial probiotic in humans.

sprD유전자의 과발현이 Streptomyces griseus HH1의 분화에 미치는 영향 (Effect of the Overexpression of the sprD Gene Encoding Streptomyces griseus Pretense D for the Differentiation of Streptomyces griseus HH1)

  • 이재학
    • 한국식품영양학회지
    • /
    • 제15권4호
    • /
    • pp.364-369
    • /
    • 2002
  • 방선균은 토양 속에 다양하게 존재하는 미생물의 일종으로 그람 양성 진정세균으로 이차대사산물을 생산하는 시기와 포자 착생이 시작되는 세포분화의 시기가 밀접한 관련이 있다. S. griseus는 streptomycin을 비롯한 다양한 종류의 endopeptidase 및 exopeptidase들을 생산한다. 방선균에서의 protease 생산은 많은 경우에 이차대사산물이 형성되거나 형태분화가 유도되는 시기에 동시에 시작된다는 점에서 Pretense가 이차대사물질 생산 및 세포분화에 일정한 기능을 수행할 것이 라는 점을 시사하고 있다. 본 연구에서는 S. griseus IFO 13350에서 클로닝한 SGPD protease가 각 strain에서 형태학적으로나 생리적으로 어떠한 gene dosage 효과를 미치는지 조사하는 것이었다. sprD 유전자가 S.lividans를 숙주로 사용한 시스템에서 대량발현이 성공적으로 되는 것을 확인한 후, 본 유전자를 클로닝한 S. griseus IFO13350 균주와 이의 A-factor 결손주인 S. griseus HH1에 형질전환하였다. S. griseus HH1과 S. griseus IFO13350에서는 protease activity가 벡터만 도입된 대조군과 sprD 유전자가 들어간 형질전환체에서 큰 차이를 보이지 않았다. 또한 S. griseus IFO 13350 및 HH1 모두에서 생리학적·형태학적 분화의 차이를 발견하지 못하였다. Chymotrypsin계열의 pretense를 암호화하는 유전자만이 S. griseus에서 발현이 repression된다는 사실을 본 연구 결과를 통하여 알게 되었다. 이를 바탕으로 sprD유전자와 동일계열의 chymotrypsin 계열의 유전자들이 공통적으로 S. griseus에서 repression 되는 일반적인 기전이 있을 것으로 판단, chymotrypsin계열 유전자들의 promoter부분의 염기 상동성을 조사하였다 번역개시부위 바로 상부 유전자부터 상동성을 조사한 결과 적어도 상당부분의 염기배열이 잘 보존된 지역이 존재함을 알게 되었다. 향후 이들 발현기구의 조절기구를 연구함으로서 protease의 기능을 밝히는데 좋은 단서를 제공할 것으로 판단된다.

Microbial Conversion of Ginsenoside $Rb_1$ to Minor Ginsenoside $F_2$ and Gypenoside XVII by Intrasporangium sp. GS603 Isolated from Soil

  • Cheng, Le-Qin;Na, Ju-Ryun;Kim, Myung-Kyum;Bang, Myun-Ho;Yang, Deok-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1937-1943
    • /
    • 2007
  • A new strain, GS603, having ${\beta}$-glucosidase activity was isolated from soil of a ginseng field, and its ability to convert major ginsenoside $Rb_1$ to minor ginsenoside or gypenoside was studied. Strain GS603 was identified as an Intrasporangium species by phylogenetic analysis and showed high ginsenoside-converting activity in LB and TSA broth but not in nutrient broth. The culture broth of the strain GS603 could convert ginsenoside $Rb_1$i into two metabolites, which were analyzed by TLC and HPLC and shown to be the minor ginsenoside $F_2$ and gypenoside XVII by NMR.

식품, 영양과 암의 관계 (Food, Nutrition and Cancer)

  • 류태형
    • 한국식품영양과학회지
    • /
    • 제14권3호
    • /
    • pp.305-313
    • /
    • 1985
  • There is a trend that the total number of cancer cases is steadily increasing as the population grows. It has been estimated that 85% of the cancer rate in the U.S. is attributed to environmental factors. Among the environmental factors, diet and nutrition appear to be related to the largest number of human cancers. Diet and nutrition might be related to cancer by several mechanisms. Food may contain a direct carcinogen or precursors that become carcinogens by spontanous reactions, or by host metabolism, or through the actions of microbial flora. Chemicals that cause cancers generally have reactive electrophilic centers which can combine with electron-rich atoms in nucleic acids and cause cancers by changing the genetic activity of the cells. A variety of factors in foods might be involved in the etiology of carcinogenesis. Chemicals in food that cause cancers include carcinogens of plants and animal origin and also those in drinking water. Other then these, fungal metabolites alcohol, asbestos, heavy metals, pesticides, and food additives might be included as food carcinogenesis. The method of cooking foods also might contribute to carcinogenesis. Some chemicals in foods act as promoters in carcinogenesis. Prevention of cancers by dietary practises have received much interest. Consumption of certain vegetables or cellulose can reduce carcinogenic activity of several compounds. A variety of antioxidants or micronutrients may be effective anticarciongens. Glutathione in the soluble fraction of the cells, is a major defense against oxidative and alkylating carcinogens. Recently anticarcinogenic activity of chlorophyll was demonstrated. Daily consumption of milk appears to effectively reduce stomach cancer.

  • PDF

Microbiome-Linked Crosstalk in the Gastrointestinal Exposome towards Host Health and Disease

  • Moon, Yuseok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제19권4호
    • /
    • pp.221-228
    • /
    • 2016
  • The gastrointestinal exposome represents the integration of all xenobiotic components and host-derived endogenous components affecting the host health, disease progression and ultimately clinical outcomes during the lifespan. The human gut microbiome as a dynamic exposome of commensalism continuously interacts with other exogenous exposome as well as host sentineling components including the immune and neuroendocrine circuit. The composition and diversity of the microbiome are established on the basis of the luminal environment (physical, chemical and biological exposome) and host surveillance at each part of the gastrointestinal lining. Whereas the chemical exposome derived from nutrients and other xenobiotics can influence the dynamics of microbiome community (the stability, diversity, or resilience), the microbiomes reciprocally alter the bioavailability and activities of the chemical exposome in the mucosa. In particular, xenobiotic metabolites by the gut microbial enzymes can be either beneficial or detrimental to the host health although xenobiotics can alter the composition and diversity of the gut microbiome. The integration of the mucosal crosstalk in the exposome determines the fate of microbiome community and host response to the etiologic factors of disease. Therefore, the network between microbiome and other mucosal exposome would provide new insights into the clinical intervention against the mucosal or systemic disorders via regulation of the gut-associated immunological, metabolic, or neuroendocrine system.

Soraphen 생합성 유전자군을 갖는 점액세균의 분리 (Isolation of Myxobacteria Carrying Soraphen Biosynthetic Gene Clusters)

  • 이차율;현혜숙;조경연
    • 한국미생물·생명공학회지
    • /
    • 제37권1호
    • /
    • pp.10-16
    • /
    • 2009
  • 생합성 유전자들이 알려져 있고 탐색할 후보 균주들이 확보되어있는 경우에 중합효소연쇄반응(PCR)은 유용한 이차 대사산물을 생산하는 새로운 균주의 탐색에 있어서 간편한 방법이 될 수 있다. 본 연구에서는 중합효소연쇄반응에 의해 50균주의 셀룰로오스 분해성 점액세균로부터 강력한 항진균물질 soraphen의 생합성 유전자로 보이는 유전자를 가지는 두 점액세균 균주 KYC3047과 KYC3076를 선별하였다. 그리고 형태학적, 생리학적, 분자생물학적 특성에 의해 이들 균주들을 S. cellulosum로 동정하였다. 두 균주는 모두 예상한대로 칸디다증을 유발하는 Candida albicans와 고추 탄저병을 유발하는 Colletotrichum acutatum에 강한 항균활성을 갖는 물질을 생산하였다.

Citrinin Hydrate Inhibit Serotonin N-Acetyltransferase Catalyzing the Conversion of Serotonin to N-Acetylserotonin

  • Lee, In-Kyoung;Yun, Bong-Sik;Kim, Kyong-Tai;Choi, Bo-Hwa;Park, Tae-Ju;Kim, Young-Ho;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1099-1101
    • /
    • 2001
  • In an attempt to search for serotonin N-acetyltransferase (arylalkylamine N-acetyltransferasem, AA-NAT) inhibitors from microbial metabolites, we fecund the culture broth of Penicillium sp. 80722 which showed a strong inhibitory activity against AA-NNT. The active principle has been identified as citrinin hydrate through bioassay-guided fractionation of cultural broth, and structure elucidation derived by spectroscopic analyses. Citrinin hydrate inhibits AA-NAT with an $IC_50$ value of $173{\mu}M$ in a dose-dependent manner. Although citrinin hydrate was previously isolated as human rhinovirus 3C-protease inhibitor, this was recognized as the first AA-NAT inhibitor isolated from natural sources.

  • PDF

Trichoderma harzianum이 생산하는 melanin 생성 저해물질 MR304-1 (MR304-1, A Melanin Synthesis Inhibitor Produced by Trichoderma harzianum)

  • 이충환;정명철;이호재;이계호;고영희
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.641-646
    • /
    • 1995
  • During the screening of inhibitors of melanin biosynthesis from microbial secondary metabolites, a fungal strain MR304 which was capable of producing high level of an inhibitor was selected. Based on taxonomic studies, this fungus could be classified as Trichoderma harzianum. The active compound (MR304-1) was purified from culture broth by Diaion HP-20 column chromatography, ethylacetate extraction, Sephadex LH-20 column chromatographv and HPLC. The inhibitor was identified as 3-(1,5-dihvdroxy-3-isocyanocyclopent-(E)-3-envl)prop-2-enoate by spectroscopic methods of UV, ESIMS, $^{1}$H-NMR, $^{13}$C-NMR, NOE, HMQC and HMBC. MR304-1 showed strong mushroom tyrosinase inhibitory activity with IC$_{50}$ value of 0.25 $\mu $g/ml. It inhibited melanin biosynthesis with 15 mm inhibition zone at 30 $\mu $g/paper disc in Streptomyces bikiniensis, a bacterium used as an indicator organism in this work. It also inhibited melanin biosynthesis in B16 melanoma cells with a niinimum inhibitory concentration of 0.05 $\mu $g/ml.

  • PDF

Biotransformation of a Fungicide Ethaboxam by Soil Fungus Cunninghamella elegans

  • PARK, MI-KYUNG;KWANG-HYEON LIU;YOONGHO LIM;YOUN-HYUNG LEE;HOR-GIL HUR;JEONG-HAN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권1호
    • /
    • pp.43-49
    • /
    • 2003
  • Metabolism of a new fungicide ethaboxam by soil fungi was studied. Among the fungi tested, Cunninghamelia elegans produced metabolites from ethaboxam, which were not found in the control experiments. M5, a major metabolite from ethaboxam was firmly identified as N-deethylated ethaboxam by LC/MS/MS and NMR. N-Deethylated ethaboxam has been found as a single metabolite in in vitro metabolism with rat liver microsomes. Ml was proved to be 4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboxamide (ETC) by comparing with the authentic compound. In addition, M2, M3, and M4, and M6 were tentatively Identified by LC/MS/MS as hydroxylated and methoxylated ethaboxams, respectively. Production of the major metabolite, N-deethylated ethaboxam, by the fungus suggested that C. elegans would be an efficient eukaryotic microbial candidate for evaluating xenobiotic-driven mammalian risk assessment.

판지공장 폐수 중 난분해성 유기물질이 동력학적 계수 및 생분해에 미치는 영향 (Effect of Recalcitrant Organics on Bio-kinetic Coeffcient and Biodegradable in Box-mill Wastewater)

  • 조용덕;이상화
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.329-338
    • /
    • 2006
  • The research aims to provide the basic data for practical applications by correlating the bio-kinetic coefficients with the load of recalcitrant organic matter in box-mill wastewater. The activated sludge process was employed to a Wastewater disposal plant in an industrial setting, increase of consequently leading to the organic load. The parameter values derived by Monod-kinetic analysis were as follows:specific substrate removal rate $K_{max}=0.17day^{-1}$, half saturation constants $K_s=60.37mg/l$, decay coefficient $K_d=0.142day^{-1}$, microbial yield coefficient y = 0.388mg/mg, and max specific growth rate ${\mu}_{max}=0.006day^{-1}$. In view of biodegradability, the $TCOD_{Mn}/TBOD_5$ ratios of inflow and outflow were 1.07 and 1.41, and the $SCOD_{Mn}/SBOD_5$ ratios of inflow and outflow were 1.10 and 1.50, respectively. The higher $TCOD_{Mn}/TBOD_5$ ratio of outflow indicated that metabolites of a microorganism have accumulated in the cells.