DOI QR코드

DOI QR Code

Microbiome-Linked Crosstalk in the Gastrointestinal Exposome towards Host Health and Disease

  • Moon, Yuseok (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University)
  • Received : 2016.11.22
  • Accepted : 2016.12.05
  • Published : 2016.12.30

Abstract

The gastrointestinal exposome represents the integration of all xenobiotic components and host-derived endogenous components affecting the host health, disease progression and ultimately clinical outcomes during the lifespan. The human gut microbiome as a dynamic exposome of commensalism continuously interacts with other exogenous exposome as well as host sentineling components including the immune and neuroendocrine circuit. The composition and diversity of the microbiome are established on the basis of the luminal environment (physical, chemical and biological exposome) and host surveillance at each part of the gastrointestinal lining. Whereas the chemical exposome derived from nutrients and other xenobiotics can influence the dynamics of microbiome community (the stability, diversity, or resilience), the microbiomes reciprocally alter the bioavailability and activities of the chemical exposome in the mucosa. In particular, xenobiotic metabolites by the gut microbial enzymes can be either beneficial or detrimental to the host health although xenobiotics can alter the composition and diversity of the gut microbiome. The integration of the mucosal crosstalk in the exposome determines the fate of microbiome community and host response to the etiologic factors of disease. Therefore, the network between microbiome and other mucosal exposome would provide new insights into the clinical intervention against the mucosal or systemic disorders via regulation of the gut-associated immunological, metabolic, or neuroendocrine system.

Keywords

References

  1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80. https://doi.org/10.1038/nature09944
  2. Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 2013;9:e1002863. https://doi.org/10.1371/journal.pcbi.1002863
  3. Raymond F, Ouameur AA, Deraspe M, Iqbal N, Gingras H, Dridi B, et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 2016;10:707-20. https://doi.org/10.1038/ismej.2015.148
  4. Kang C, Zhang Y, Zhu X, Liu K, Wang X, Chen M, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes. J Clin Endocrinol Metab 2016;101:4681-9. https://doi.org/10.1210/jc.2016-2786
  5. Gibson MK, Pesesky MW, Dantas G. The yin and yang of bacterial resilience in the human gut microbiota. J Mol Biol 2014;426:3866-76. https://doi.org/10.1016/j.jmb.2014.05.029
  6. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220-30. https://doi.org/10.1038/nature11550
  7. Fiocchi C. Towards a 'cure' for IBD. Dig Dis 2012;30:428-33. https://doi.org/10.1159/000338148
  8. Fiocchi C. Integrating omics: the future of IBD? Dig Dis 2014;32 Suppl 1:96-102. https://doi.org/10.1159/000367836
  9. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009;137:1716-24.e1-2. https://doi.org/10.1053/j.gastro.2009.08.042
  10. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5:220-30. https://doi.org/10.1038/ismej.2010.118
  11. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016;14:20-32. https://doi.org/10.1038/nrmicro3552
  12. Fava F, Danese S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 2011;17:557-66. https://doi.org/10.3748/wjg.v17.i5.557
  13. Scharl M, Rogler G. Microbial sensing by the intestinal epithelium in the pathogenesis of inflammatory bowel disease. Int J Inflam 2010;2010:671258.
  14. Scanlan PD, Shanahan F, O'Mahony C, Marchesi JR. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease. J Clin Microbiol 2006;44:3980-8. https://doi.org/10.1128/JCM.00312-06
  15. Sepehri S, Kotlowski R, Bernstein CN, Krause DO. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis 2007;13:675-83. https://doi.org/10.1002/ibd.20101
  16. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, et al. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 2002;277:20431-7. https://doi.org/10.1074/jbc.M110333200
  17. Awad WA, Ghareeb K, Bohm J, Zentek J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010;27:510-20. https://doi.org/10.1080/19440040903571747
  18. Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, et al. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCRDGGE guided microbial selection. BMC Microbiol 2010;10:182. https://doi.org/10.1186/1471-2180-10-182
  19. Tenk I, Fodor E, Szathmary C. The effect of pure Fusarium toxins (T-2, F-2, DAS) on the microflora of the gut and on plasma glucocorticoid levels in rat and swine. Zentralbl Bakteriol Mikrobiol Hyg A 1982;252:384-93.
  20. Wache YJ, Valat C, Postollec G, Bougeard S, Burel C, Oswald IP, et al. Impact of deoxynivalenol on the intestinal microflora of pigs. Int J Mol Sci 2009;10:1-17.
  21. Bezirtzoglou EE. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. Microb Ecol Health Dis 2012;23:10.3402/mehd.v23io.18370.
  22. Lei L, Waterman MR, Fulco AJ, Kelly SL, Lamb DC. Availability of specific reductases controls the temporal activity of the cytochrome P450 complement of Streptomyces coelicolor A3(2). Proc Natl Acad Sci U S A 2004;101:494-9. https://doi.org/10.1073/pnas.2435922100
  23. Sperry JF, Wilkins TD. Presence of cytochrome c in Desulfomonas pigra. J Bacteriol 1977;129:554-5.
  24. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54:2325-40. https://doi.org/10.1194/jlr.R036012
  25. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008;27:104-19.
  26. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 2011;45 Suppl:S120-7. https://doi.org/10.1097/MCG.0b013e31822fecfe
  27. Schilderink R, Verseijden C, de Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol 2013;4:226.
  28. Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink GR, Lambers TT, et al. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gastrointest Liver Physiol 2016;310:G1138-46. https://doi.org/10.1152/ajpgi.00411.2015
  29. Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 2004;317:463-71. https://doi.org/10.1016/j.bbrc.2004.03.066
  30. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 2014;40:833-42. https://doi.org/10.1016/j.immuni.2014.05.014
  31. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011;141:599-609, 609.e1-3. https://doi.org/10.1053/j.gastro.2011.04.052
  32. Duca FA, Lam TK. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab 2014;16 Suppl 1:68-76. https://doi.org/10.1111/dom.12340
  33. Paul HA, Bomhof MR, Vogel HJ, Reimer RA. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep 2016;6:20683. https://doi.org/10.1038/srep20683
  34. Reid DT, Eller LK, Nettleton JE, Reimer RA. Postnatal prebiotic fibre intake mitigates some detrimental metabolic outcomes of early overnutrition in rats. Eur J Nutr 2016;55:2399-409. https://doi.org/10.1007/s00394-015-1047-2
  35. Yang J, Summanen PH, Henning SM, Hsu M, Lam H, Huang J, et al. Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front Physiol 2015;6:216.
  36. Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology 2015;148:1107-19. https://doi.org/10.1053/j.gastro.2014.12.036
  37. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013;39:372-85. https://doi.org/10.1016/j.immuni.2013.08.003
  38. Ikuta T, Kurosumi M, Yatsuoka T, Nishimura Y. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression. Exp Cell Res 2016;343:126-34. https://doi.org/10.1016/j.yexcr.2016.03.012
  39. Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015;67:259-79. https://doi.org/10.1124/pr.114.009001
  40. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 2014;14:801-14. https://doi.org/10.1038/nrc3846
  41. Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF, Roberts R, et al. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and Lcarnitine. Arterioscler Thromb Vasc Biol 2014;34:1307-13. https://doi.org/10.1161/ATVBAHA.114.303252
  42. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57-63. https://doi.org/10.1038/nature09922
  43. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576-85. https://doi.org/10.1038/nm.3145
  44. Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 2011;85:863-71. https://doi.org/10.1007/s00204-011-0648-7
  45. Saracut C, Molnar C, Russu C, Todoran N, Vlase L, Turdean S, et al. Secondary bile acids effects in colon pathology. Experimental mice study. Acta Cir Bras 2015;30:624-31. https://doi.org/10.1590/S0102-865020150090000007

Cited by

  1. What is the microbiome? vol.102, pp.5, 2016, https://doi.org/10.1136/archdischild-2016-311643
  2. Gut microbiome pattern in adolescents with functional gastrointestinal disease vol.6, pp.1, 2016, https://doi.org/10.1016/j.ijpam.2019.01.005
  3. The role of a sequencing-based clinical intestinal screening test in patients at high-risk for Clostridium difficile and other pathogens: a case report vol.13, pp.1, 2016, https://doi.org/10.1186/s13256-018-1919-1
  4. Role of Damage-Associated Molecular Patterns in Light of Modern Environmental Research: A Tautological Approach vol.14, pp.5, 2016, https://doi.org/10.1007/s41742-020-00276-z