• Title/Summary/Keyword: Microbial Treatment

Search Result 1,639, Processing Time 0.031 seconds

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.

Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment (하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향)

  • Chai, Hyungwon;Choi, Yonghoon;Kim, Myeongwoon;Kim, Youngjin;Jung, Sokhee P.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.345-356
    • /
    • 2020
  • The removal of organic carbon and nutrients (i.e. N and P) from wastewater is essential for the protection of the water environment. Especially, nitrogen compounds cause eutrophication in the water environment, resulting in bad water quality. Conventional nitrogen removal systems require high aeration costs and additional organic carbon. Microbial electrochemical system (MES) is a sustainable environmental system that treats wastewater and produces energy or valuable chemicals by using microbial electrochemical reaction. Innovative and cost-effective nitrogen removal is feasible by using MESs and increasing attention has been given to the MES development. In this review, recent trends of MESs for nitrogen removal and their mechanism were conclusively reviewed and future research outlooks were also introduced.

Sequential microbial-photocatalytic degradation of imidacloprid

  • Sharma, Teena;Kaur, Manpreet;Sobti, Amit;Rajor, Anita;Toor, Amrit Pal
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.597-604
    • /
    • 2020
  • In the present study, the application of sequential biological and photocatalytic process was evaluated as a feasible process for the degradation of imidacloprid (IMI) in soil. Photocatalysis was carried out as a post and pre-treatment to the biological process as Microbial Photocatalytic (MP) and Photocatalytic Microbial (PM), respectively, to enhance the degradation and mineralization of IMI in soil. By both the processes, there was an enhancement in the percentage degradation of IMI i.e 86.2% for PM and 94.6% for MP process. The obtained results indicate that MP process is apparently more efficient in degradation of IMI which was observed with 15 days of biological treatment followed by 18 h of photocatalytic degradation (15 d + 18 h). The present work also reveals that though the difference in terms of the degradation of IMI after 5 d + 18 h, 10 d + 18 h & 15 d+ 18 h of MP process is not drastic, yet significant variation has been observed in terms of mineralization that truly signifies the removal of IMI from the soil. The LC analysis has shown that the intermediates formed during MP process are more and smaller in comparison to PM process, which further provides evidence that MP process is better than PM process for effective degradation of IMI in soil.

Microbial Composition and Pattern of Antibiotic Resistance in Subgingival Microbial Samples From Patients With Refractory Periodontitis (난치성 치주염환자로부터 채취한 치은연하 세균의 구성과 항생제 내성에 관한 연구)

  • Chang, Beom-seok
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.725-736
    • /
    • 2000
  • It is becoming increasingly apparent that periodontitis consists of mixture of diseases, most of which respond favorably to traditional mechanical therapy. Among these variants of the disease, some appear to be associated with unusual microbial infections and defective host defenses. Many of these fail to respond to conventional treatment. The recognition that some forms of periodontitis are refractory to standard periodontal therapy has given rise to a new classification of peridontitis. A series of 1692 subgingival microbial samples sent to a diagnostic microbiology laboratory included 738 samples that could be identified as compatible with a clinical diagnosis of refractory or recurrent periodontitis. In descending order of prevalence the associated microbiota included Bacteroides forsythus(85%) ,Fusobacterium species(78%), Spirochetes(67%), Campylobacter rectus(64%), Porphyromonas gingivalis(59%), Peptostreptococcus micros(58%), motile rods(46%), Prevotella intermedia(33%), Eikenella corrodens(13%), Capnocytophaga species(12%) ,and Actinobacillus actinomycetemcomitans(6%). Antibiotic resistance to tetracycline, penicillin G, or metronidazole was particularly noticeable for Fusobacterium species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans. It was largely absent for Campylobacter rectus. No antibiotic data were obtained for Porphyromonas gingivalis or Bacteroides forsythus, as these species were detected by immunofluorescence. The results indicate that a substantial number of microorganisms associated with refractory periodontitis are variably resistant to commonly-used antibiotics. Diagnostic microbiology must be considered an essential adjunct to the therapist faced with periodontal lesions refractory to conventional treatment.

  • PDF

Evaluation of the Effect of High Salinity RO Concentrate on the Microbial Acclimation/Cultivation Characteristics in Biological Wastewater Treatment Process (RO 농축수내 고농도 염분이 생물학적 폐수처리공정내 미생물 순응/배양에 미치는 영향평가)

  • Kim, Youn-Kwon;Kang, Suk-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.707-713
    • /
    • 2012
  • There are a lot of parameters affecting microbial acclimation/cultivation characteristics such as dynamic conditions, F/M ratio and substrate affinity. From the process control point of view, the effect of high salinity on the removal efficiencies of BOD and SS have been documented by few researchers. In this research, lab-scale CAS(Conventional Activated Sludge) process and modified $A_2O$(Anaerobic/Anoxic/Oxic) process were operated and monitored to evaluate the characteristics of microbial acclimation and cultivation under high salinity wastewater during the period of three weeks. As a result of acute microbial activity test(6hr) at various $Cl^-$ concentration, the appropriate $Cl^-$ concentration for microbial growth and acclimation ranged under 3,100 mg/l. As a result of acclimation/cultivation test, the trend of COD removal efficiency reduced gradually as time elapsed. It is considered that $NH_4$-N removal phenomenon of the conventional pollutants removal mechanisms gave little effect to the microbial acclimation/cultivation under high salinity wastewater.

Effects of alfalfa flavonoids extract on the microbial flora of dairy cow rumen

  • Zhan, Jinshun;Liu, Mingmei;Wu, Caixia;Su, Xiaoshuang;Zhan, Kang;Zhao, Guo qi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1261-1269
    • /
    • 2017
  • Objective: The effect of flavonoids from alfalfa on the microbial flora was determined using molecular techniques of 16S ribosome deoxyribonucleic acid (rDNA) analysis. Methods: Four primiparous Holstein heifers fitted with ruminal cannulas were used in a $4{\times}4$ Latin square design and fed a total mixed ration to which alfalfa flavonoids extract (AFE) was added at the rates of 0 (A, control), 20 (B), 60 (C), or 100 (D) mg per kg of heifer BW. Results: The number of operational taxonomic units in heifers given higher levels of flavonoid extract (C and D) was higher than for the two other treatments. The Shannon, Ace, and Chao indices for treatment C were significantly higher than for the other treatments (p<0.05). The number of phyla and genera increased linearly with increasing dietary supplementation of AFE (p<0.05). The principal co-ordinates analysis plot showed substantial differences in the microbial flora for the four treatments. The microbial flora in treatment A was similar to that in B, C, and D were similar by the weighted analysis. The richness of Tenericutes at the phylum level tended to increase with increasing AFE (p = 0.10). The proportion of Euryarchaeota at the phylum level increased linearly, whereas the proportion of Fusobacteria decreased linearly with increasing AFE supplementation (p = 0.04). The percentage of Mogibacterium, Pyramidobacter, and Asteroleplasma at the genus level decreased linearly with increasing AFE (p<0.05). The abundance of Spirochaeta, Succinivibrio, and Suttonella at the genus level tended to decrease linearly with increasing AFE (0.05

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

  • Xie, Guo R.;Choi, Chan S.;Lim, Bong S.;Chu, Shao X.
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.283-294
    • /
    • 2020
  • This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr6+ increased from 10 ppm to 60 ppm. Almost complete removal of Cr6+ and low removal of Cu2+ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr6+ and Cu2+ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu2+, Ni2+, and Zn2+ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu2+, Ni2+ and Zn2+ ions in the effluent was due to the fact that the Cr6+ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr6+ and Cu2+ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr6+, Cu2+, Ni2+ and Zn2+ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr6+ through the cathode chamber of MFC of the MFC-MEC-coupled system.

Study on Change of Microbial Activity and Removal Efficiency of Phosphorus with Alum Injection in the Biological Process (생물학적 처리공정 내 Alum 주입에 따른 인 처리 효율과 미생물 활성도 변화에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • The effects of coagulants on the microorganisms when they are injected directly into the biological treatment facility for T-P removal have been easily observed from the results of past experiments. As such this study is set out to derive the effective plans for the coagulant dosage by analyzing the effects of the injected coagulant on the microbial activity during the chemical treatment for T-P removal. The research methods entailed the assessment of removal efficiency of T-P according to the coagulant dosage while changing the molar ration between Alum and influent phosphorus. At the same time Specific Oxygen Uptake Rate (SOUR) according to the coagulant dosage was measured. SOUR was used as a method for indirect assessment of the microbial activity according to the coagulant dosage. The results from the study showed that with the increase in the alum dosage, the removal efficiency T-P tended to increase. On the other hand, the increase in coagulant dosage resulted in the decrease in SOUR, which indicates the decrease in the microbial activity. Such reduction in the activity could be explained by the increase in the concentration of removal efficiency of $TBOD_5$. Based on experiment results from the study, it is determined that coagulant dosage affects the microbial activity. Moreover, the indirect assessment on the microbial activity using SOUR is considered possible.

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).