References
- Magiera S, Baranowska I, Lautenszleger A. UHPLC-UV method for the determination of flavonoids in dietary supplements and for evaluation of their antioxidant ctivities. J Pharm Biomed Anal 2015;102:468-75. https://doi.org/10.1016/j.jpba.2014.10.004
- Lemmens KJA, Wier B, Vaes N, et al. The flavonoid 7-mono-O-(b-hydroxyethyl)-rutoside is able to protect endothelial cells by a direct antioxidant effect. Toxicol in Vitro 2014;28:538-43. https://doi.org/10.1016/j.tiv.2013.12.019
- Orhna DD, Ozcelik B, Ozgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res 2010;165:496-504. https://doi.org/10.1016/j.micres.2009.09.002
- He MY, Wu T, Pan SY, Xu XY. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl Surf Sci 2014;305:515-21. https://doi.org/10.1016/j.apsusc.2014.03.125
- Denman SE, Mcsweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbio Ecol 2006;58:572-82. https://doi.org/10.1111/j.1574-6941.2006.00190.x
-
Seradj AR, Abecia L, Crespo J et al. The effect of Bioflavex
$^{(R)}$ and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol 2014;197:85-91. https://doi.org/10.1016/j.anifeedsci.2014.08.013 - Ehsan O, Norhani A, Armin O. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res Int 2013:2013;Article ID 349129.
- Sivakumaran S, Molan AL, Meagher LP, et al. Variation in antimicrobial action of proanthocyanidins from Dorycnium rectum against rumen bacteria. Phytochemistry 2004;65:2485-97. https://doi.org/10.1016/j.phytochem.2004.08.046
- Kim ET, Guan LL, Lee SJ, et al. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas J Anim Sci 2015;28:530-7. https://doi.org/10.5713/ajas.14.0692
- Pitta DW, Kumar S, Veiccharelli B, et al. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalus bubalis) using 16S pyrotags. Anaerobe 2014;25:31-41. https://doi.org/10.1016/j.anaerobe.2013.11.008
- Highlander SK. High throughput sequencing methods for microbiome profiling: application to food animal systems. Anim Health Res Rev 2012;13:40-53. https://doi.org/10.1017/S1466252312000126
-
Li HQ, Shi L, Li QS, et al. Synthesis of C(7) modified chrysin derivatives designing to inhibit
${\beta}$ -ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics. Bioorg Med Chem 2009;17:6264-9. https://doi.org/10.1016/j.bmc.2009.07.046 - Park KD, Cho SJ. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: improvement of stability and proposed action mechanism. Eur J Med Chem 2010;45:1028-33. https://doi.org/10.1016/j.ejmech.2009.11.045
- Tan H, Liu W. Bacteriostasis test on the flavonoid compounds from Euphorbiae humifusae Willd. in vitro. J Tradit Chinese Vet Med 2007;4:5-6.
- Kutschera M, Engst W, Blaut M, Braune A. Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 2011;111:165-75. https://doi.org/10.1111/j.1365-2672.2011.05025.x
- Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 2011;76:49-63. https://doi.org/10.1111/j.1574-6941.2010.01029.x
- Singh KM, Ahir VB, Tripatili AK, et al. Metagenomic analysis of surti buffalo (bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 2012;39:4841-8. https://doi.org/10.1007/s11033-011-1278-0
- Brown DR, Whitcomb RF, Bradbury JM. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J System Evolu Microbiol 2007;57:2703-19. https://doi.org/10.1099/ijs.0.64722-0
- Ma T, Chen DD, Tu Y, et al. Dietary supplementation with mulberry leaf flavonoids inhibits methanogenesis in sheep. Anim Sci J 2017;88:72-8. https://doi.org/10.1111/asj.12556
- Gupta RS, Sethi M. Phylogeny and molecular signatures for the phylum Fusobacteria and its distinct subclades. Anaerobe 2014;28:182-98. https://doi.org/10.1016/j.anaerobe.2014.06.007
- Zhong D, Brower-Sinning R, Firek B, Morowitz MJ. Acute appendicitis in children is associated with an abundance of bacteria from the phylum Fusobacteria. J Pediatr Surg 2014;49:441-6. https://doi.org/10.1016/j.jpedsurg.2013.06.026
- Avgustin G, Wallace RJ, Flint H. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Sys Bacteriol 1997;47:284-8. https://doi.org/10.1099/00207713-47-2-284
- Bekele AZ, Koike S, Kobayashi Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 2010;305:49-57. https://doi.org/10.1111/j.1574-6968.2010.01911.x
- Downes J, Vartoukian SR, Dewhirst FE, et al. Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum 'Synergistetes' isolated from the human oral cavity. Int J Syst Evol Microbiol 2009;59:972-80. https://doi.org/10.1099/ijs.0.000364-0
- Hernandez-Sanabria E, Goonewardene LA, Wang ZQ, et al. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol 2012;78:1203-14. https://doi.org/10.1128/AEM.05114-11
- Zhao YH, Yang RH, Wang JQ. Methane production mechanism and regulation of rumen microbes. J Microbiol 2005;25:68-73.
- Lee SH, Park JH, Kang HJ, et al. Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresour Technol 2013;145:25-32. https://doi.org/10.1016/j.biortech.2013.02.070
- Nakazawa F, Sato M, Poco SE, et al. Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int J Syst Evol Microbiol 2000;50:679-88. https://doi.org/10.1099/00207713-50-2-679
- Arraes FBM, Carvalho MJA, Maranhao AQ, et al. Differential metabolism of Mycoplasma species as revealed by their genomes. Genet Mol Biol 2007;30:182-9. https://doi.org/10.1590/S1415-47572007000200004
- Ozcan F, Yildiz A, Ozlu MF, et al. A case of fatal endocarditis due to Suttonella Indologenes. Anadolu Kardiyol Derg 2011;11:85-7.
Cited by
- Ecological plasticity in the gastrointestinal microbiomes of Ethiopian Chlorocebus monkeys vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-18435-2
- Short communication: Signs of host genetic regulation in the microbiome composition in 2 dairy breeds: Holstein and Brown Swiss vol.101, pp.3, 2018, https://doi.org/10.3168/jds.2017-13179
- Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants vol.32, pp.1, 2019, https://doi.org/10.5713/ajas.18.0262
- A Mixed Phytogenic Modulates the Rumen Bacteria Composition and Milk Fatty Acid Profile of Water Buffaloes vol.7, pp.None, 2020, https://doi.org/10.3389/fvets.2020.00569
- The relationship between the rumen microbiome and carcass merit in Angus steers vol.98, pp.9, 2017, https://doi.org/10.1093/jas/skaa287
- Effect of mixture of herbal plants on ruminal fermentation, degradability and gas production vol.43, pp.None, 2021, https://doi.org/10.4025/actascianimsci.v43i1.48549
- Comparative Analysis of Fecal Bacterial Microbiota of Six Bird Species vol.8, pp.None, 2021, https://doi.org/10.3389/fvets.2021.791287
- Consequences of herbal mixture supplementation on milk performance, ruminal fermentation, and bacterial diversity in water buffaloes vol.9, pp.None, 2017, https://doi.org/10.7717/peerj.11241
- Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows vol.11, pp.3, 2017, https://doi.org/10.3390/ani11030838
- Uso da homeopatia no gado de leite como modulador da função hepática: uma revisão vol.16, pp.1, 2021, https://doi.org/10.21615/cesmvz.16.1.2
- Microbial Dynamics and In Vitro Degradation of Plant Secondary Metabolites in Hanwoo Steer Rumen Fluids vol.11, pp.8, 2017, https://doi.org/10.3390/ani11082350