DOI QR코드

DOI QR Code

Sequential microbial-photocatalytic degradation of imidacloprid

  • Sharma, Teena (School of Energy and Environment, Thapar Institute of Engineering and Technology) ;
  • Kaur, Manpreet (Energy Research Centre, Panjab University) ;
  • Sobti, Amit (SSB University Institute of Chemical Engineering & Technology, Panjab University) ;
  • Rajor, Anita (School of Energy and Environment, Thapar Institute of Engineering and Technology) ;
  • Toor, Amrit Pal (Energy Research Centre, Panjab University)
  • Received : 2019.04.15
  • Accepted : 2019.08.23
  • Published : 2020.08.31

Abstract

In the present study, the application of sequential biological and photocatalytic process was evaluated as a feasible process for the degradation of imidacloprid (IMI) in soil. Photocatalysis was carried out as a post and pre-treatment to the biological process as Microbial Photocatalytic (MP) and Photocatalytic Microbial (PM), respectively, to enhance the degradation and mineralization of IMI in soil. By both the processes, there was an enhancement in the percentage degradation of IMI i.e 86.2% for PM and 94.6% for MP process. The obtained results indicate that MP process is apparently more efficient in degradation of IMI which was observed with 15 days of biological treatment followed by 18 h of photocatalytic degradation (15 d + 18 h). The present work also reveals that though the difference in terms of the degradation of IMI after 5 d + 18 h, 10 d + 18 h & 15 d+ 18 h of MP process is not drastic, yet significant variation has been observed in terms of mineralization that truly signifies the removal of IMI from the soil. The LC analysis has shown that the intermediates formed during MP process are more and smaller in comparison to PM process, which further provides evidence that MP process is better than PM process for effective degradation of IMI in soil.

Keywords

References

  1. Scholz K, Spiteller M. Influence of groundcover on the degradation of 14C imidacloprid in soil, In: Proceedings, Brighton Crop protection Conference-Pests and Diseases. 23-26 November 1992; Brighton. p. 883-888.
  2. Thuyet DQ, Yamazaki K, Phong TK, Watanabe H, Nhung DTT, Takagi K. Determination of imidacloprid in paddy water and soil by liquid chromatography electrospray ionization-tandem mass spectrometry. J. Anal. Chem. 2010;65:843-847. https://doi.org/10.1134/S1061934810080149
  3. Elbert A, Buchholz A, Ebbinghaus KU, Erdelen C, Nauen, R, Schnorbach HJ. The biological profile of thiacloprid-A new chloronicotinyl insecticide. Pflanzenschutz-Nachrichten Bayer 2001;54:185-208.
  4. Schmuck R, Stadler T, Schmidt HW. Field relevance of a synergistic effect observed in a laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honey bee (Apis mellifera L, Hymenoptera). Pest Manage. Sci. 2003;59:279-286. https://doi.org/10.1002/ps.626
  5. Chopra SL, Kanwar JS. Analytical agriculture chemistry. New Delhi; Kalyani Publishers; 1991. p. 309-310.
  6. Changgen F, Gang XU, Xia LIU. Photocatalytic degradation of imidacloprid by composite catalysts $H_3PW_{12}O_{40}/La-TiO_2$. J. Rare. Earth 2013;31:44-48. https://doi.org/10.1016/S1002-0721(12)60232-4
  7. Kitsiou V, Filippidis N, Mantzavinos D, Poulios I. Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions. Appl. Catal. B Environ. 2009;86:27-35. https://doi.org/10.1016/j.apcatb.2008.07.018
  8. Segura C, Zaror C, Mansilla HD, Mondaca MA. Imidacloprid oxidation by photo-Fenton reaction. J. Hazard. Mater. 2008;150:679-686. https://doi.org/10.1016/j.jhazmat.2007.05.018
  9. Malato S, Caceres J, Aguera A, et al. Degradation of imidacloprid in water by photo-Fenton and $TiO_2$ photocatalysis at a solar pilot plant: A comparative study. Environ. Sci. Technol. 2001;35:4359-4366. https://doi.org/10.1021/es000289k
  10. Chen S, Deng J, Deng Y, Gao N. Influencing factors and kinetic studies of imidacloprid degradation by ozonation. Environ. Technol. 2019;40:2127-2134. https://doi.org/10.1080/09593330.2018.1439105
  11. Zahoor M, Mahramanlioglu M. Adsorption of imidacloprid on powdered activated carbon and magnetic activated carbon. Chem. Biochem. Eng. Q. 2011;25:55-63.
  12. Redlich D, Shahin N, Ekici P, Friess A, Parlar H. Kinetical study of the photoinduced degradation of imidacloprid in aquatic media. Clean 2007;35:452-458.
  13. Wamhoff H, Schneider V. Photodegradation of imidacloprid. J. Agric. Food Chem. 1999;47:1730-1734. https://doi.org/10.1021/jf980820j
  14. Wang YB, Zhao HY, Li MF, Fanb JA, Zhaoaet GH. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl. Catal. B Environ. 2014;147:534-545. https://doi.org/10.1016/j.apcatb.2013.09.017
  15. Sharma T, Toor AP, Rajor A. Photocatalytic degradation of imidacloprid in soil: Application of response surface methodology for the optimization of parameters. RSC Adv. 2015;5:25059-25065. https://doi.org/10.1039/C5RA02224J
  16. Sharma T, Rajor A, Toor AP. Potential of Enterobactor sp. Strain ATA1 on imidacloprid degradation in soil microcosm: Effect of various parameters. Environ. Prog. Sustain. Energy 2015;34:1291-1297. https://doi.org/10.1002/ep.12115
  17. Akoijam R, Singh B. Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus. Int. J. Environ. Anal. Chem. 2015;95:730-743. https://doi.org/10.1080/03067319.2015.1055470
  18. Hu G, Zhao Y, Liu B, Song F, You M. Isolation of an indigenous imidacloprid-degrading bacterium and imidacloprid bioremediation under simulated in situ and ex situ conditions. J. Microbiol. Biotechnol. 2013;23:1617-1626. https://doi.org/10.4014/jmb.1305.05048
  19. Phugare SS, Kalyani DC, Gaikwad YB, Jadhav JP. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem. Eng. J. 2013;230:27-35. https://doi.org/10.1016/j.cej.2013.06.042
  20. Shetti AA, Kaliwal RB, Kaliwal BB. Imidacloprid induced intoxication and its biodegradation by soil isolate Bacillus weihenstephanensis. British Biotechnol. J. 2014;4:957-969. https://doi.org/10.9734/BBJ/2014/8255
  21. Gopal M, Dutta D, Jha SK, et al. Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pestic. Res. J. 2011;23:36-40.
  22. Anhalt JC, Moorman TB, Koskinen WC. Biodegradation of imidacloprid by an isolated soil microorganism. J. Environ. Sci. Health B 2007;42:509-514. https://doi.org/10.1080/03601230701391401
  23. Amat AM, Arqus A, Beneyto H, Garacia, A, Miranda MA, Segui S. Ozonisation coupled with biological degradation for treatment of phenolic pollutants: A mechanistically based study. Chemosphere 2003;53:79-86. https://doi.org/10.1016/S0045-6535(03)00450-8
  24. Choi Y, Koo MS, Bokare AD, Kim D, Bahnemann DW, Choi W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/$TiO_2$. Environ. Sci. Technol. 2017;51:3973-3981. https://doi.org/10.1021/acs.est.6b06303
  25. Sarria V, Parra S, Invernizzi M, Perniger P, Pulagarin C. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Sci. Technol. 2001;44:93-101. PMID:11695489
  26. Sarria V, Parra S, Adler N, Perniger P, Pulagarin C. Recent development in the coupling of photo-assisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catal. Today 2002;76:301-315. https://doi.org/10.1016/S0920-5861(02)00228-6
  27. Zeng Y, Hong PKA, Waverk DA. Integrated chemical-biological treatment of benzo(a)pyrene. Environ. Sci. Technol. 2000;34:854-862. https://doi.org/10.1021/es990817w
  28. Amador JA, Alexander M, Zika RG. Sequential photochemical and microbial degradation of organic molecules bound to humic acid. Appl. Environ. Microbiol. 1989;55:2843-2849. https://doi.org/10.1128/AEM.55.11.2843-2849.1989
  29. Esplugas S, Contreras S, Ollis DF. Engineering aspects of the integration of chemical and biological oxidation: simple mechanistic models for the oxidation treatment. J. Environ. Eng. 2004;130:967-974. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:9(967)
  30. Goi A, Trapido M, Tuhkanen T. A study of toxicity, biodegradability and some by-products of ozonised nitrophenols. Adv. Environ. Res. 2004;8:303-311. https://doi.org/10.1016/S1093-0191(02)00102-8
  31. Essam T, Aly Amin M, El Tayeb O, Mattiasson B, Guieysse B. Solar-based detoxification of Phenol and p-nitrophenol by sequential $TiO_2$ photocatalysis and photosynthetically aerated biological treatment. Water Res. 2007;41:1697-1704. https://doi.org/10.1016/j.watres.2007.01.015
  32. Essam T, Aly Amin M, El Tayeb O, Mattiasson B, Guieysse, B. Sequential photochemical-biological degradation of chlorophenols. Chemosphere 2007;66:2201-2209. https://doi.org/10.1016/j.chemosphere.2006.08.036
  33. Tamer E, Hamid Z, Aly AM, Ossama ET, Bo M, Bemoit G. Sequential UV biological of chlorophenols. Chemosphere 2006;63:277-284. https://doi.org/10.1016/j.chemosphere.2005.07.022
  34. Shah MP. Combined application of Biological-photocatalytic process in Degradation of Reactive Black Dye: An Excellent Outcome. Am. J. Microbiol. Res. 2013;1:92-97. https://doi.org/10.12691/ajmr-1-4-5
  35. Samir R, Tamer E, Yasser R, Hashem A. Enhanced photocatalytic-biological degradation of 2,4 dichlorophenoxyacetic acid. Bull. Fac. Pharm. Cario Univ. 2015;53:77-82.
  36. Sharma T, Toor AP, Rajor A. Degradation of imidacloprid in liquid by enterobacter sp. strain ATA1 using co-metabolism. Biorem. J. 2014;18:227-235. https://doi.org/10.1080/10889868.2014.918575
  37. Sharma T. Sequential Microbial-Photocatalytic process for degradation of Neonicotinoid pesticide. [Dissertation]. Patiala;Thapar Institute of Engineering & Technology; 2015.
  38. Jafari N, Kermanshahi RK, Soudi MR, Mahavi AH, Gharavi S. Degradation of textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2-$TiO_2$/UV. Iran. J. Environ. Health Sci. Eng. 2012;9:33. https://doi.org/10.1186/1735-2746-9-33
  39. Gonzalez LF, Sarria V, Sanchez OF. Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and $TiO_2$/UV. Bioresour. Technol. 2010;101:3493-3499. https://doi.org/10.1016/j.biortech.2009.12.130
  40. Balcioglu IA, Cecen F. Treatability of kraft pulp bleaching wastewater by biochemical and photocatalytic oxidation. Water Sci. Technol. 1999;40:281-288. https://doi.org/10.2166/wst.1999.0058
  41. Li XY, Zhao YG. Advanced treatment of dying wastewater for reuse. Water Sci. Technol. 1999;39:249-255.
  42. Suryaman D, Hasegawa K, Kagaya S. Combined biological and photocatalytic treatment for the mineralisation of phenol in water. Chemosphere 2006;65:2502-2506. https://doi.org/10.1016/j.chemosphere.2006.07.059
  43. Sraw A, Kaur T, Pandey Y, Sobti A, Wanchoo RK, Toor AP. Fixed bed recirculation type photocatalytic reactor with $TiO_2$ immobilized clay beads for the degradation of pesticide polluted water. J. Environ. Chem. Eng.2018;6:7035-7043. https://doi.org/10.1016/j.jece.2018.10.062

Cited by

  1. NH2-Fe-MILs for effective adsorption and Fenton-like degradation of imidacloprid: Removal performance and mechanism investigation vol.27, pp.2, 2020, https://doi.org/10.4491/eer.2020.702