• Title/Summary/Keyword: Microbial Culture

Search Result 878, Processing Time 0.034 seconds

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Identification of Streptomyces scopuliridis KR-001 and Its Herbicidal Characteristics (Streptomyces scopuliridis KR-001의 분리 동정 및 잡초 방제효과)

  • Lee, Boyoung;Kim, Jae Deok;Kim, Young Sook;Ko, Young Kwan;Yon, Gyu Hwan;Kim, Chang-Jin;Koo, Suk Jin;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 2013
  • With increasing environmental issues from synthetic chemical herbicides, microbe-originated herbicides could be a fascinating alternative in current agriculture. We isolated Streptomyces strains that produced herbicidal active metabolite(s) against a grass weed Digitaria sanguinalis. According to the result from 16S rDNA sequence comparison with the close strains, the best isolate (Code name MS-80673) was identified as Streptomyces scopuliridis KR-001. The closest type strain was Streptomyces scopuliridis RB72 which was previously reported as a bacteriocin producer. The optimal culture condition of S. scopuliridis KR-001 was $28^{\circ}C$, pH 7.0 and culture period 4 to7 days. Both of soil and foliar application of the crude culture broth concentrate was effective on several troublesome or noxious weed species such as a Sciyos angulatus in a greenhouse and field condition. Phytotoxic symptoms of the culture broth concentrate of S. scopuliridis KR-001 by foliar application were wilting and burndown of leaves, and stems followed by discoloration and finally plant death. In crops such as rice, wheat, barley, hot pepper and tomato, growth inhibition was observed. These results suggest that the new S. scopuliridis KR-001 strain producing herbicidal metabolites may be a new bio-herbicide candidate and/or may provide a new lead molecule for a more efficient herbicide.

Studies on the Constituents and Culture of the Higher Fungi of Korea(II) -The Antitumor Components and Culture of Lentinus edodes(Berk.) Singer- (한국산(韓國産) 고등균류(高等菌類)의 성분(成分) 및 배양(培養)에 관한 연구(硏究)(II) -표고버섯의 항암성분(抗癌成分) 및 배양(培養)-)

  • Chung, Kyeong-Soo
    • The Korean Journal of Mycology
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 1982
  • Carpophores of ten Korean strains of Lentinus edodes (Berk.) Singer, an antitumor polysaccharide producing fungus, were extracted with 0.1N NaOH solution. The extracts were dialized for seven days in distilled water and lyophilized to produce crude polysaccharide powders. Thus obtained crude polysaccharide samples were assayed for sugar contents by colorimetric method with anthrone reagent. Among ten strains examined Lentinus edododes-DMC7 was found to be the richest strain in polysaccharide content of carpophores. By shake culture experiment for biomass production, L. edodes-DMC7 was found to be the second most productive strain among seven strains examined. Cultural characteristics of L. edodes-DMC7 were investigated by shake culture method. The best result was obtained when L. edodes-DMC7 was cultured in the medium containing glucose 8g, starch 80g, yeast extract 12g, $KH_2PO_4\;0.87g,\;MgSO_4{\cdot}7H_2O\;O.5g,\;CaCl_2\;0.3g,\;FeSO_4{\cdot}7H_2O\;10mg\;ZnSO_4{\cdot}7H_2O\;4mg,\;CuSO_4{\cdot}5H_2O\;lmg,\;MnCl_2{\cdot}4H_2O\;7mg\;per\;11\;at\;28^{\circ}C$, 180 rpm, for 12 days. Thus thirty-three grams of dry mycelia was obtained per one liter of medium.

  • PDF

Development of a Rapid Enrichment Broth for Vibrio parahaemolyticus Using a Predictive Model of Microbial Growth with Response Surface Analysis (미생물 생장 예측모델과 반응표면분석법을 이용한 Vibrio parahaemolyticus의 신속 증균배지 개발)

  • Yeon-Hee Seo;So-Young Lee;Unji Kim;Se-Wook Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.449-456
    • /
    • 2023
  • In this study, we developed Rapid Enrichment Broth for Vibrio parahaemolyticus (REB-V), a broth capable enriching V. parahaemolyticus from 100 CFU/mL to 106 CFU/mL within 6 hours, which greatly facilitates the rapid detection of V. parahaemolyticus. Using a modified Gompertz model and response surface methodology, we optimized supplement sources to rapidly enrich V. parahaemolyticus. The addition of 0.003 g/10 mL of D-(+)-mannose, 0.002 g/10 mL of L-valine, and 0.002 g/10 mL of magnesium sulfate to 2% (w/v) NaCl BPW was the most effective combination of V. parahaemolyticus enrichment. Optimal V. parahaemolyticus culture conditions using REB-V were at pH 7.84 and 37℃. To confirm REB-V culture efficiency compared to 2% (w/v) NaCl BPW, we assessed the amount of enrichment achieved in 7 hours in each medium and extracted DNA samples from each culture every hour. Real-time PCR was performed using the extracted DNA to verify the applicability of this REB-V culture method to molecular diagnosis. V. parahaemolyticus was enriched to 5.452±0.151 Log CFU/mL in 2% (w/v) NaCl BPW in 7 hours, while in REB-V, it reached 7.831±0.323 Log CFU/mL. This confirmed that REB-V enriched V. parahaemolyticus to more than 106 CFU/mL within 6 hours. The enrichment rate of REB-V was faster than that of 2% (w/v) NaCl BPW, and the amount of enrichment within the same time was greater than that of 2% (w/v) NaCl BPW, indicating that REB-V exhibits excellent enrichment efficiency.

Growth, Storage and Fresh-cut Characteristics of Onion (Allium cepa L.) in Unstable Environmental Condition and Storage Temperature (양파의 이상 재배조건에서 생육과 저장온도에 따른 저장성 및 포장한 신선편이 특성)

  • Lee, Jung-Soo;Chang, Min-Sun;Park, SuHyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.143-154
    • /
    • 2016
  • The purpose of this study was investigated the quality changes before and after harvesting, storage and, processing of onion. Experiments were carried out to compare the effect on the characteristics of the postharvest from preharvest factors using onion. This experiment had identified the characteristics of harvested onions after cultivating with several preharvest factors such as the light and water conditions. These tests were conducted in an onion growth in the field, storage, and processing of fresh-cut during a laboratory periods of 2 years. In first year, onion cultivars ('Kars' and 'Pop') were produced under stable or unstable environment conditions, these onions were stored at low temperature(0?). Measurement was evaluated by the growth amount after harvesting, and the fresh weight loss and respiration rate during storage. According to different culture conditions and storage temperatures, it was investigated the properties of the fresh-cut onion. Growth of onion was varied depending on the cultivars and culture conditions. The amount of growth on 'Kars' and 'Pop' onions were decreased by excessive soil water conditions with shading. These influences were found the morphological differences resulting for the cell tissue of onion being rough and large. Onion cultivated in excessive soil water with shading affected the degree of its respiration rate and fresh weight loss during storage. Ones in excessive soil water with shading were higher than the control in fresh weight loss and respiration rate, respectively. However fresh-cut onion could not investigated to clarify the difference due to effects of cultivation condition and storage temperature on some measure items such as electrolyte leakage and microbial number change. There was a change of only electrolyte leakage depending on the storage temperature, rather than cultivated conditions before harvesting factor. The results showed that the onion grown on in the good environment was represented to a good quality produce even after harvesting.

Studies on Microbial Inulase (Part I) -A Study on the Isolation of an Inulase Producing strain and the Optimum Cultural Conditions for the Enzyme Production- (미생물(微生物) Inulase에 관한 연구(硏究) 제1보(第一報) -Inulase생산균주(生産菌株)의 분리(分離)와 효소생산(酵素生産)을 위한 배양조건(培養條件)의 검토(檢討)-)

  • Kim, Ki-Choul
    • Applied Biological Chemistry
    • /
    • v.18 no.1
    • /
    • pp.42-51
    • /
    • 1975
  • Penicillium sp I which produces a powerful hydrolysing enzyme was isolated from putrefid and dry Jerusalem artichoke medium. The strain was used to study on the optimum culture conditions for enzyme production. The results obtained are as follows: 1. Penicillium sp I was a vigorous strain to produce inulase. 2. The optimum culture conditions of the strain was examined in the Jerusalem artichoke extract medium and the synthetic medium. 3. Inulase productivity in the Jerusalem artichoke extract medium was higher than that of the synthetic medium. 4. The optimum culture period of the Jerusalem artichoke extract medium was four days, whereas that of the synthetic medium was five days. 5. The optimum temperature, pH and concentration in the Jerusalem artichoke extract medium were $30^{\circ}C$, 5.0 and 4.0% (W/V), respectively. Meanwhile, the optimum temperature, pH and concentration in the synthetic medium were $30{\sim}33^{\circ}C$, $5.0{\sim}6.0$, and $1.0{\sim}1.5%$ (W/V), respectively. 6. Corn steep liquor, peptone, $(NH_4)_2HPO_4,\;NH_4H_2PO_4,\;(NH_4)_2SO_4$, etc. were favorable as nitrogen sources. Of these, especially, Corn steep liquor and peptone as organic nitrogen sources caused an increase in inulase production in the synthetic medium. 7. All sugars except for inulin have no effect upon the inulase production. 8. KCl, $MgSO_4\;and\;FeSO_4$ were favourable mineral sources for inulase production.

  • PDF

Pelvic microbial flora in the users versus the nonusers of intrauterine device determined by laparoscopic method (복강경을 이용한 자궁내장치 사용자의 복강세균학적 연구)

  • Hahn, Won-Bo;Kwak, Hyun-Mo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.11 no.1
    • /
    • pp.17-32
    • /
    • 1984
  • There are numerous reports on the relative risk of pelvic inflammatory disease among the users versus the nonusers of intrauterine device. Reported relative risk varied from no difference between the two groups to 3-9 fold increase in the users. In an attempt to define this relative risk of pelvic inflammatory disease and related microorganisms ,pelvic organ observation and bacteriological study were done through laparoscopy. Specimens for microbiologic culture were obtained simultaneously from the fallopian tubes via laparoscopy and from the endocervix via regular pelvic examination method. The study population was consisted of 30 I.U.D.users and 35 J.U.D.nonusers who visited the Yonsei University Severance Hospital and the Sung-Ga Hospital for laparoscopic sterilization. The results obtained were as follows: 1. There was no difference in age distribution, economic status and numbers of parity and abortion between I.U.D. users and I.U.D. nonusers. 2. The pelvic inflammatory findings were noted on laparoscopy in 2 cases of I.U.D. users, with an incidence of 6.6%. And no pelvic inflammatory finding was noted in any of the nonusers,but this difference was not statistically significant (p>0.005). 3. All the bacteriologic culture of the specimens from the fallopian tubes of both groups yielded negative results. 4. The bacteriologic culture of the spec imens f rom the endocervix revealed more frequent isolation of possible pathogen such as Hem ophilus ,alpha-Streptococcus ,Corynebacteria, Bacteroides in the I.U.D.users than in the nonusers.But,this difference was also not statistically significant (p>0.005).

  • PDF

Effect of Byproducts Supplementation by Partically Replacing Soybean Meal to a Total Mixed Ration on Rumen Fermentation Characteristics In Vitro (대두박 대체 부산물 위주의 TMR 사료가 반추위 내 미생물의 In Vitro 발효특성에 미치는 영향)

  • Bae, Gui Seck;Kim, Eun Joong;Song, Tae Ho;Song, Tae Hwa;Park, Tae Il;Choi, Nag Jin;Kwon, Chan Ho;Chang, Moon Baek
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.129-140
    • /
    • 2014
  • This study was performed to evaluate the effects of replacing basic total mixed ration (TMR) with fermented soybean curd, Artemisia princeps Pampanini cv. Sajabal, and spent coffee grounds by-product on rumen microbial fermentation in vitro. Soybean in the basic TMR diet (control) was replaced by the following 9 treatments (3 replicates): maximum amounts of soybean curd (SC); fermented SC (FSC); 3, 5, and 10% FSC + fermented A. princeps Pampanini cv. Sajabal (1:1, DM basis, FSCS); and 3, 5, 10% FSC + fermented coffee meal (1:1, DM basis, FSCC) of soybean. FSC, FSCS, and FSCC were fermented using Lactobacillus acidophilus ATCC 496, Lactobacillus fermentum ATCC 1493, Lactobacillus plantarum KCTC 1048, and Lactobacillus casei IFO 3533. Replacing dairy cow TMR with FSC treatment led to a pH value of 6 after 8 h of incubation-the lowest value measured (p<0.05), and FSCS and FSCC treatments were higher than SC and FSC treatment after 6 h (p<0.05). Gas production was higher in response to 3% FSC and FSCC treatments than the control after 4-10 h. Dry matter digestibility was increased 0-12 h after FSC treatment (p<0.05) and was the highest after 24 h of 10% FSCS treatment. $NH_3-N$ concentration was the lowest after 24 h of FSC treatment (p<0.05). Microbial protein content increased in response to treatments that had been fermented by the Lactobacillus spp. compared to control and SC treatments (p<0.05). The total concentration of volatile fatty acids (VFAs) was increased after 6-12 h of FSC treatment (p<0.05), while the highest acetate proportion was observed 24 h after 5% and 10% FSCS treatments. The FSC of propionate proportion was increased for 0-10 h compared with among treatments (p<0.05). The highest acetate in the propionate ration was observed after 12 h of SC treatment and the lowest with FSCS 3% treatment after 24 h. Methane ($CH_4$) emulsion was lower with A. princeps Pampanini cv. Sajabal and spent coffee grounds treatments than with the control, SC, and FSC treatments. These experiments were designed to replace the by-products of dairy cow TMR with SC, FSC, FSCS, and FSCC to improve TMR quality. Condensed tannins contained in FSCS and FSCC treatments, which reduced $CH_4$ emulsion in vitro, decreased rumen microbial fermentation during the early incubation time. Therefore, future experiments are required to develop a rumen continuous culture system and an in vivo test to optimize the percentages of FSC, FSCS, and FSCC in the TMR diet of the dairy cows.

Studies on Degradation of Nucleic acid and Related Compounds by Microbial Enzymes (미생물 효소에 의한 핵산 및 그의 관련물질의 분해에 관한 연구)

  • Kim, Sang-Soon
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.111-129
    • /
    • 1970
  • As a series of studies on the nucleic acids and their related substances 210 samples were collected from 76 places such as farm soil, compost of heap, nuruk and meju to obtain microbial strains which produce 5'-phosphodiesterase. From these samples total of 758 strains were isolated by the use of dilution pour plate method. For all isolated strains primary screening of the productivity of RNA depolymerase was performed and useful strains with regard to 5'-phosphodiesterase productivities were identified. For these useful strains optimum condition, the effect of various compounds on the activity of 5'-phosphodiesterase, and the optimum condition for enzyme reaction were discussed. The quantitative of 5'-mononucleotides produced by the action of 5'-phosphodiesterase was performed using anion-exchange column chromatography and their identified was done by paper chromatography, thinlayer chromatography, ultra violet spectrophotometry, and characteristic color reaction using carbazole and schiff's reagent. (1) Penicillium citreo-viride PO 2-11 and Streptomyces aureus SOA 4-21 from soil were identified as a potent 5'-phosphodiesterase producing strains. (2) Optimum culture conditions for Penicillium citreo-viride PO 2-11 strain isolated were found to be pH 5.0 and $30^{\circ}C$, and the optimum conditions for enzyme action of 5'-phosphodiesterase were pH 4.2 and $60^{\circ}C$. Best carbon source for the production of 5'-phosphodiesterase was found to be sucrose and ammonium nitrate for nitrogen source. Addition of 0.01% corn steep liquor or yeast extract exhibited 20% increase in the amount of 5'-phosphodiesterase production compared to the control. 5'-phosphodiesterase produced by this strain was activated by $Mg^{++},\;Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by EDTA, citrate, $Cu^{++},\;CO^{++}$. 5'-phosphodiesterase produced 5'-mononucleotide from RNA at a rate of 65.81%, and among the 5'-mononucleotides accumulated 5'-GMP only was found to have flavorous and the strain was also found lack of 5'-AMP deaminase. Productivity of flavorous 5'-GMP was found to be 186.7mg per gram of RNA. (3) Optimum culture canditions for the isolated Streptomyces aureus SOA 4-21 strain were pH 7.0 and $28^{\circ}C$, and the optimum conditions for the action of 5'-phosphodiesterase were pH 7.3 and $50^{\circ}C$. The best carbon source for 5'-phosphodiesterase production was found to be glucose and that of nitrogen was asparagine. Addition of 0.01% yeast extract exhibited increased productivity of 5'-phosphodiesterase by 40% compared to the non-added control. 5'-phosphodiesterase produced by this strain was activated by $Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by citrate, EDTA, $Cu^{++}$. It was also found that the strain produce 5'-AMP deaminase in addition to 5'-phosphodiesterase. For this reason although decomposition rate was 63.58% the accumulation of 5'-AMP, 5'-CMP, 5'-GMP and 5'-UMP occurred by the breakdown of RNA. In the course of these reaction 5'-AMP deaminase converted 60% of 5'-AMP thus produced into 5'-IMP and flavorous 5'-mono nucleotide production was significantly increased by this strain over the above mentioned one. Production rates were found to be 171.8mg per grain of RNA for 5'-IMP and 148.2mg per gram of RNA for 5'-GMP, respectively.

  • PDF

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential (혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.