• Title/Summary/Keyword: Microbial Biotechnology

Search Result 2,201, Processing Time 0.03 seconds

Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage

  • Lee, Na-Kyoung;Kim, Hyoun Wook;Lee, Joo Yeon;Ahn, Dong Uk;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.272-276
    • /
    • 2015
  • The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of Bacillus cereus inoculated in beef jerky during storage, were studied. Five strains of pathogenic B. cereus were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of B. cereus mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, the number of mesophilic bacteria and B. cereus increased unlikely for beef jerky with nisin. B. cereus started to grow after 3 d in 100 IU nisin/g treatment, and after 21 d in 500 IU nisin/g treatment. The results suggest that nisin could be an effective approach to extend the shelf-life, and improve the microbial safety of beef jerky, during storage.

Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity

  • Zhang, Dongdong;Wang, Yi;Zhang, Chunfang;Zheng, Dan;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.305-313
    • /
    • 2018
  • A microbial consortium, TMC7, was enriched for the degradation of natural lignocellulosic materials under high temperature. TMC7 degraded 79.7% of rice straw during 15 days of incubation at $65^{\circ}C$. Extracellular xylanase was effectively secreted and hemicellulose was mainly degraded in the early stage (first 3 days), whereas primary decomposition of cellulose was observed as of day 3. The optimal temperature and initial pH for extracellular xylanase activity and lignocellulose degradation were $65^{\circ}C$ and between 7.0 and 9.0, respectively. Extracellular xylanase activity was maintained above 80% and 85% over a wide range of temperature ($50-75^{\circ}C$) and pH values (6.0-11.0), respectively. Clostridium likely had the largest contribution to lignocellulose conversion in TMC7 initially, and Geobacillus, Aeribacillus, and Thermoanaerobacterium might have also been involved in the later phase. These results demonstrate the potential practical application of TMC7 for lignocellulosic biomass utilization in the biotechnological industry under hot and alkaline conditions.

Production of Microbial-Transglutaminase [MTG] from Streptoverticillium mobaraense

  • Wang, Hong-Wei;Kim, In-Hae;Park, Chang-Su;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.322-327
    • /
    • 2007
  • Mineral salts in medium usually profoundly influence microorganism growth and protein synthesis. In order to produce microbial transglutaminase (MTG) with a high yield from Streptoverticillium mobaraense, we screened the minerals $CaCl_2,\;CoCl_2,\;FeSO_4,\;ZnSO_4,\;MnSO_4\;and\;CuSO_4$ for MTG fermentation. The results indicated that appropriate $FeSO_4$ concentrations could significantly promote cell growth and stimulate the production of MTG. With 15 mg/L of $FeSO_4$ added to medium, 58% improvements were noted in MTG productivity (2.24 U/mL). NaCl, $CaCl_2,\;and\;CoCl_2$ enhanced MTG productivity by less than 15%, and the optimal concentrations were determined as 1 g/L, 2 g/L, and 30 mg/L respectively. Furthermore, it was determined that 7.5 mg/L of $ZnSO_4$ in medium could augment MTG productivity by 20% and induce the stationary phase for MTG production to a period 24 hr earlier. This basic and novel discovery should result in the development of a good complement to the previously defined culture media for MTG fermentation.

Translocation of VP1686 Upregulates RhoB and Accelerates Phagocytic Activity of Macrophage Through Actin Remodeling

  • Bhattacharjee, Rabindra N.;Park, Kwon-Sam;Chen, Xiuhao;Iida, Tetsuya;Honda, Takeshi;Takeuchi, Osamu;Akira, Shizuo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.171-175
    • /
    • 2008
  • Here, we report that Vibrio parahaemolyticus induces a rapid remodeling of macrophage actin and activates RhoB GTPase. Mutational analysis revealed that the effects depend on type III secretion system 1 regulated translocation of a V. parahaemolyticus effector protein, VP1686, into the macrophages. Remodeling of actin is shown to be necessary for increased bacterial uptake followed by initiation of apoptosis in macrophages. This provides evidence for functional association of the VP1686 in triggering an eat me-and-die signal to the host.

Evaluation of horizontal gene transfer from genetically modified zoysiagrass to the indigenous microorganisms in isolated GMO field (GMO 격리포장에서의 유전자변형 들잔디로부터 토착미생물로의 수평유전자전달 평가)

  • Bae, Tae-Wung;Lee, Hyo-Yeon;Ryu, Ki-Hyun;Lee, Tae-Hyeong;Lim, Pyung-Ok;Yoon, Pill-Yong;Park, Sin-Young;Riu, Key-Zung;Song, Pill-Soon;Lee, Yong-Eok
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.75-80
    • /
    • 2007
  • The release of genetically modified organisms ($GMO_{s}$) into the environment has the potential risks regarding the possibility of gene transfer from $GMO_{s}$ to natural organisms and this needs to be evaluated. This study was conducted to monitor the possible horizontal gene transfer from herbicide-resistant zoysiagrass (Zoysia japonica Steud.) to indigenous microorganisms. We have first examined the effect of field-released GM zoysiagrass on the microbial flora in the gut of locust (Locusts mlgratoria). The microbial flora was analyzed through determining the 165 rDHA sequences of microorganisms. The comparison of the microbial flora in the gut of locusts that were captured at the field of GM zoysiagrass and of wild-type revealed that there is no noticeable difference between these two groups. This result indicates that the GM zoysiagrass does not have negative impact on microbial flora in the gut of locust. We then investigated whether the horizontal gene transfer occurred from GM zoysiagrass to microbes in soil, rhizosphere and faecal pellets from locusts by utilizing molecular tools such as Southern hybridization and polymerase chain reaction (PCR). When the total DNAs isolated from microbes in GM zoysiagrass and in wild-type zoysiagrass fields were hybridized with probes for bar or hpt gene, no hybridization signal was detected from both field isolates, while the probes were hybridized with DNA from the positive control. Absence of these genes in the FNAs of soil microorganisms as well as microbes in the gut of locust was further confirmed by PCR. Taken together, our data showed that horizontal gene transfer did not occur in this system. These results further indicate that frequencies of transfer of engineered plant DNA to bacteria are likely to be negligible.

Synergistic Effect of Slightly Acidic Electrolyzed Water and Ultrasound at Mild Heat Temperature in Microbial Reduction and Shelf-Life Extension of Fresh-Cut Bell Pepper

  • Luo, Ke;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1502-1509
    • /
    • 2015
  • The objectives of this study were to evaluate the effect of combined treatments (slightly acidic electrolyzed water (SAEW), ultrasound (US), or mild heat (60℃)) on the growth of Listeria monocytogenes and Salmonella enterica serovar Typhimurium in fresh-cut bell pepper, and the shelf-life and sensory quality (color and texture) were followed during storage at 4℃ and 25℃. An additional 0.65, 1.72, and 2.70 log CFU/g reduction was achieved by heat treatments at 60℃ for 1 min for DW, SAEW, and SAEW+US, respectively. Regardless of the type of pathogen, the combined treatment (SAEW+US+60℃) achieved a significantly (p < 0.05) longer lag time in all treatment groups. This combined treatment also prolonged the shelf-life of bell pepper up to 8 days and 30 h for the storage at 4℃ and 25℃, respectively. There was also no significant difference in the color and hardness of treated (SAEW+US+60℃) bell pepper from that of control during the storage. This new hurdle approach is thus expected to improve the microbial safety of bell peppers during storage and distribution.

FASIM: Fragments Assembly Simulation using Biased-Sampling Model and Assembly Simulation for Microbial Genome Shotgun Sequencing

  • Hur Cheol-Goo;Kim Sunny;Kim Chang-Hoon;Yoon Sung-Ho;In Yong-Ho;Kim Cheol-Min;Cho Hwan-Gue
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.683-688
    • /
    • 2006
  • We have developed a program for generating shotgun data sets from known genome sequences. Generation of synthetic data sets by computer program is a useful alternative to real data to which students and researchers have limited access. Uniformly-distributed-sampling clones that were adopted by previous programs cannot account for the real situation where sampled reads tend to come from particular regions of the target genome. To reflect such situation, a probabilistic model for biased sampling distribution was developed by using an experimental data set derived from a microbial genome project. Among the experimental parameters tested (varied fragment or read lengths, chimerism, and sequencing error), the extent of sequencing error was the most critical factor that hampered sequence assembly. We propose that an optimum sequencing strategy employing different insert lengths and redundancy can be established by performing a variety of simulations.

Characterization of Bacterial Structures in a Two-Stage Moving-Bed Biofilm Reactor (MBBR) During Nitrification of the Landfill Leachate

  • Ciesielski, Slawomir;Kulikowska, Dorota;Kaczowka, Ewelina;Kowal, Przemyslaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1140-1151
    • /
    • 2010
  • Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (>99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-$NH_4/m^2{\cdot}d$. Increasing the ammonium load to 2.03 g N-$NH_4/m^2{\cdot}d$or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-$NH_4/m^2{\cdot}d$), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Nonmetric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations suit particular AOB strains.

sanN Encoding a Dehydrogenase is Essential for Nikkomycin Biosynthesis in Streptomyces ansochromogenes

  • Ling, Hong-Bo;Wang, Guo-Jun;Li, Jin-E;Tan, Hua-Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.397-403
    • /
    • 2008
  • Nikkomycins are a group of peptidyl nucleoside antibiotics with potent fungicidal, insecticidal, and acaricidal activities. sanN was cloned from the partial genomic library of Streptomyces ansochromogenes 7100. Gene disruption and complementation analysis demonstrated that sanN is essential for nikkomycin biosynthesis in S. ansochromogenes. Primer extension assay indicated that sanN is transcribed from two promoters (sanN-P1 and sanN-P2), and sanN-P2 plays a more important role in nikkomycin biosynthesis. Purified recombinant SanN acts as a dehydrogenase to convert benzoate-CoA to benzaldehyde in a random-order mechanism in vitro, with respective $K_{cat}/K_m$$ values of $3.8mM^{-1}s^{-1}\;and\;12.0mM^{-1}s^{-1}$ toward benzoate-CoA and NADH, suggesting that SanN catalyzes the formation of picolinaldehyde during biosynthesis of nikkomycin X and Z components in the wild-type stain. These data would facilitate us to understand the biosynthetic pathway of nikkomycins and to consider the combinatorial synthesis of novel antibiotic derivatives.

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.