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Abstract We have developed a program for generating
shotgun data sets from known genome sequences. Generation
of synthetic data sets by computer program is a useful
alternative to real data to which students and researchers have
limited access. Uniformly-distributed-sampling clones that
were adopted by previous programs cannot account for the
real situation where sampled reads tend to come from particular
regions of the target genome. To reflect such situation, a
probabilistic model for biased sampling distribution was
developed by using an experimental data set derived from a
microbial genome project. Among the experimental parameters
tested (varied fragment or read lengths, chimerism, and
sequencing error), the extent of sequencing error was the most
critical factor that hampered sequence assembly. We propose
that an optimum sequencing strategy employing different insert
lengths and redundancy can be established by performing a
variety of simulations.
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With the advent of the shotgun sequencing approach, genome
sequence data are being rapidly accumulated. As for
microorganisms, 157 complete genomes have been published
as of March 2004. Whole genome shotgun sequencing (WGSS)
is to sequence randomly generated fragments of an entire
genome, and then to assemble the sequences by computer
program [13]. In addition the study of function based on
microbial genomes is dynamic in progress [6, 8, 10, 11].
Availability of a sequence assembly program and well-
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designed shotgun approach can considerably reduce the cost
and time for genome projects. /n silico simulation of entire
sequencing steps such as base calling from chromatograms,
vector masking, and sequence assembly can be extremely
helpful in understanding each step and in designing the
experiments with its predictive power. However, this “virtual
experience of genome project” is hampered by the limited
availability of real experimental data sets.

Generation of random short fragment sequences by
computer program can be a useful alternative to the real
data set. To the best of our knowledge, only two programs
have been reported to date: GenFrag 2.1 [2] and celsim
[12]. GenFrag was developed to fragment and mutate a
DNA sequence for testing assembly algorithms. Celsim
can generate synthetic shotgun data sets, allowing repeat
structures and polymorphic variants from the real DNA
sequences. However, in developing assembling tools and
simulating WGSS, there still remains the need for generating
various data sets by considering many experimental factors
such as chimerism, sequencing error, distribution of fragment,
or read length. Specifically, when generating random fragments
from known sequences, assumption of uniformly sampled
clones can lead to unrealistic results. This is caused by the
observation that biased clone distribution always happens
because of various reasons: incomplete fracturing of genome,
biased insertion of fragments into vectors, and improper
cloning of some insert/vector combinations [13].

In this study, we developed a program suite for generating
random fragments in microbial genome sequencing. To
obtain a more realistic program, a probabilistic model of
biased sampling distribution was applied to generate synthetic
shotgun data sets from known genome sequences. We also
report the effects of various experimental factors on the
sequence assembly.
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MATERIALS AND METHODS

Generation of a Probabilistic Model for Biased Random
Sampling

A probabilistic model for biased sampling distribution
was developed by using an experimentally derived data set
that was constructed from the genome project of
Mannheimia succiniciproducents MBELS5E  (accession
no. AE016827, unpublished). This strain is a novel succinic
acid-producing bacterium, which was isolated from bovine
rumen [7]. The chromosome consists of 2,314,078 bp,
which were cloned into 18,958 of 2-kb clones and 294
of 40-kb clones. As shown in Fig. 1, the bacterial
chromosome was scanned for determining the start position
of each read by the BLASTN program [1]. The cumulative
distribution function for biased sampling, F(x), was
defined as
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Fig. 1. Generation of biased-distributed data from known a
genome sequence.

F(x)=%}zi:0f(i) (0<x<genome size) (1)
where f(i) is the number of reads positioned at the ith
position, and N is the total number of reads. Once a
random number between zero and one is selected, the read
position corresponding to that number is traced from F(x).
Starting from a generated position, inserts having various
lengths such as 2 kb, 40 kb, or 150 kb can be taken out
from the published genome sequence.

Development of a Data Set Generation Program and
Sequence Assembly

The program was written in C and runs as a UNIX or
LINUX command line tool. It was designed to generate
sequence files of a shotgun data set from known genome
sequences, and the procedures are outlined in Fig. 2.
Among the options allowing users to control the read
sequences are the parameterization of normal distribution
of fragments and/or read lengths, and degree of chimerism
and sequencing error rate. Two file names, genome sequence
file and vector sequence file, are arguments with several
parameter settings (Fig. 2). The positions of every fragment
are generated from a derived probabilistic model (see
Materials and Methods). The information file containing
the inserts distribution of length and position of inserts is
also provided. After reads were generated from the ends of
inserts, a vector sequence was added to the 5' and 3' ends
of each read sequence. At this step, chimeric reads can be
generated by combining two randomly selected reads.
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Fig. 2. Flow diagram of the data set generation program.



pGEM3Zf was used as a vector sequence for the 2-kb
clone and pEpiFOS-5 for the 40- and 150-kb clones.

By using the Phred package {3] (http://www.phrap.org),
the resulting read sequences were converted into ABI files,
and then, base calling from these files was done. After the
vector sequence was masked, read sequences were assembled
into contigs (overlapped fragments in a contiguous region)
and scaffolds (maximally linked and ordered set of contigs)
by CAP3 [4].

RESULTS

Distribution of Fragments Generated by the Program
To test the performance of the program, we generated
sequencing reads uniformly from a published genome
sequence, Pasteurella multocida [15] (accession no.
NC 002663), which is a circular genome having 2,257,487 bp
(G). The simulation condition was given as insert length of
2 kb and read length of 600 bp (L). No experimental errors
were assumed. The contigs were generated by assembling
the reads with the setting of minimal overlapped length
between reads (T) as 30 bp. Theoretically, if all the reads
of the same size are uniformly sampled from the genome,
the expected number of contigs can be calculated from

=T

Ne ° 2 Bl

where N is the number of sequenced reads.

For the clarity of explanation, we defined the term
“redundancy” as the ratio of the summed length of total
sequence reads to the total genome size, and “coverage” as
the percentile of genome that can be covered by sequencing
effort at some redundancy. As shown in Fig. 3A, the
summed number of contigs and singlets, which were reads
left from contig assembly, was perfectly matched to Eq. (2)
as redundancy went. This simulation showed that the
developed program performs well in generating shotgun data
sets. In theory, uniformly sampled reads with no experimental
errors can guarantee 99% coverage with eight-fold redundancy
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Fig. 3. Redundancy profiles of contig number generated by the
program (A) and from the Manheimia genome sequencing
project (B).
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[14]. However, such a situation hardly occurred in real
WGSS, especially for a bacterial genome having a high
G+C content. Figure 3B implies the large discrepancy in
contig numbers from an ideal sequencing project and the

Table 1. Combinations of inserts size with various redundancies and their effects on sequence assembly. Data sets were derived from a

biased-sampled model.

Total redundancy Redundancies of different sized inserts (2 kb/40 kb/150 kb) No. contigs No. scaffolds

Genome coverage (%)

3X 3X/0X/0X
5X 5X/0X/0X
4X/1X/0X
3X/IX/1X
3X/0X/2X
7X 7X/0X/0X
6X/1X/0X
SX/MX/MX
5X/0X/2X

994 250 74.82
735 165 85.40
653 126 90.72
642 120 91.34
536 109 93.62
584 121 89.54
454 96 93.35
447 83 94.57
360 71 95.93
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real Manheimia WGSS, and addresses the requirement of a
more realistic biased clone distribution for the simulation
of sequence assembly.
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Fig. 4. Effects on sequence assembly by read length deviation
(A), chimerism (B), and sequencing error rate (C).

Mean read length was set to 600 bp, and unless otherwise mentioned,
parameters were set to zero. Solid line is for Eq. (2). Abbreviations: SD,
standard deviation of read length; X, rate of chimerism; R, sequencing
erTor rate.

Effect of Sequencing Strategy on Sequence Assembly
Redundancy of shotgun sequencing and the choice of
insert length are key factors in reducing scaffolds [14]. To
determine the effect of sequencing strategy on assembly,
combinations of these two factors were simulated and the
results are compared in Table 1. The data sets consisting
of 2-, 40-, and 150-kb inserts were generated based on a
biased-sampled model, for the purpose of simulating a more
realistic situation. Different redundancy combinations of
each insert length largely affected the number of contigs
and scaffolds, and genome coverage. Use of longer inserts
resulted in fewer scaffolds and larger coverage when
the total redundancy was fixed. At 5% total redundancy,
2-kb inserts with 5x redundancy were sequenced to produce
165 scaffolds corresponding to an 85.4% coverage. The
number of scaffolds rapidly decreased as the proportion of
longer inserts increased, and the combination of 150-kb
inserts with 2x redundancy and 2-kb inserts with 3x
redundancy gave the most efficient assembly of 109
scaffolds and 93.62% coverage. The same observation was
found at sequence assembly with 7x total redundancy.

Effect of Experimental Conditions on Sequence Assembly
Simulations were carried out to find out the effects of
experimental conditions on sequence assembly (Fig. 4). By
randomly sampling from the Pasteurella multocida genome
[15] sequence, we generated 2-kb inserts allowing various
experimental conditions. The simulation results were compared
with Eq. (2), which assumed uniformly sampled reads with
no experimental errors. Distribution of read lengths with
a standard deviation (SD) of 100 bp gave no difference
(Fig. 4A). However, an SD of 200 bp had an effect on
sequence assembly, and 115 contigs were remained even at
the 9.3% redundancy. This implies that it is critical to prepare
libraries with a narrow deviated insert length. In contrast to
varied read length, the variation in fragment length resulted
in no difference (data not shown). Chimerism made little
difference and 10% of chimerism resulted in slight
deviation. Considering that 10% of chimerism is hard to
achieve in real experiments, chimerism seems to be a minor
factor in WGSS. Among the experimental errors tested,
the degree of sequencing error was the most critical factor
in sequence assembly (Fig. 4C). Large deviation from
Eq. (2) was found when the sequencing error was assumed
to be above 0.1%. Interestingly, the contig number was
increased even at the higher redundancy, when sequencing
error was above 0.25%.

DISCUSSION

Although the advent of sequencing technology makes WGSS
easy to do, a genome project still costs a huge amount
of money and time. Therefore, it is essential to establish



an optimal sequencing strategy before getting into the
sequencing. In this study, we have developed a data set
generation program for microbial WGSS. In contrast to
uniformly-sampled clones that were adopted by previous
programs, we applied a biased distributed sampling model
to our program. Sampled reads biased to come from a
particular region of the target sequences frequently occur
in WGSS [13]. This can happen by incomplete fracturing
of the genome, biased insertion of fragments into vectors,
and improper cloning of some insert/vector combinations.
To date, the data set generators [2, 12] were designed
based on uniformly sampled model. However, as shown in
Fig. 3B, this assumption did not hold in real experiments
and a more realistic simulation is possible when sequence
reads are generated from a biased distributed probabilistic
model. This perspective was supported by the simulation
result that the number of scaffolds was not reduced when
the proportion of larger inserts were contained in the data
set that were generated from a uniformly sampled clone
model (data not shown).

Based on the biased sampling model, we generated
various data sets consisting of different redundancies of
different sized inserts and carried out sequence assemblies
(Table 1). When the total redundancy was 7x and 8x, the
smallest number of scaffolds and largest coverage were
achieved when 150-kb inserts with 2x redundancy were
contained in the data set. This result is consistent with a
previous finding that among one type of inserts, fewer
scaffolds resulted when longer insert lengths were used
[15]. This is due to the fact that the possibility of spanning
a larger region between contigs can be enhanced by using
longer inserts. However, it should be noted that there is
practical limitation to using a large insert size. This limitation
is caused by the experimental difficulty of sequencing the
ends of long inserts and preparing a large sized library
such as cosmid and BAC (bacterial artificial chromosome)
clones, and can bring a sharp rise in sequencing cost.
Therefore, sequence redundancy, insert length, and their
combination should be determined by considering the
economic balance. For example, in Table I, although its
total redundancy is high, 5X/1X/1X of 2 kb-, 40 kb-, and
150-kb inserts can cost less than 3X/0X/2X because of the
reduced preparation of BAC libraries for 150-kb inserts.

It has been widely accepted and an open secret that the
quality of sequencing ultimately determines the success of
WGSS. However, there was no systematic study to support
this idea. Among the experimental parameters tested (varied
insert and read length, chimerism, and sequencing error),
sequencing error was the most critical factor in hampering
sequence assembly. When the read sequences contained a
sequencing error rate of 0.1%, the contig number started to
deviate from that of the Eric-Lander Eq. (2). Specifically,
sequence assembly with a data set containing 0.25% sequence
error gave a divergent pattern of contig number as redundancy
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went (Fig. 4C). The type of error (substitution, insertion, or
deletion) possibly affects the assembling result. However, the
increased proportion of insertion and deletion rate led to a
slightly increased contig number (data not shown).

Development of sequence assembly related tools can be
benefited from a systematically controlled data set by testing
its algorithm and capability. Allowing users to vary parameters
such as distribution of fragment length and read length,
sequence error rate, and chimerism rate facilitates WGSS
by establishing an optimal strategy. We believe that students
and researchers in microbiology, who have limited access
to WGSS, can take advantage of our program for enhancing
their understanding in genomics. The detailed information
of the software is accessible at http://plant.pdrc.re.kr:7777/
fasim/, and a current release of the software can be
available upon request to hurlee@kribb.re.kr.
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