• Title/Summary/Keyword: Micro-sensor

Search Result 990, Processing Time 0.024 seconds

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

Bio-Inspired Micro/Nanostructures for Functional Applications: A Mini-Review

  • Young Jung;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Three-dimensional (3D) micro/nanostructures based on soft elastomers have received extensive attention in recent years, owing to their potential and advanced applicability. Designing and fabricating 3D micro/nanostructures are crucial for applications in diverse engineering fields, such as sensors, harvesting devices, functional surfaces, and adhesive patches. However, because of their structural complexity, fabricating soft-elastomer-based 3D micro/nanostructures with a low cost and simple process remains a challenge. Bio-inspired designs that mimic natural structures, or replicate their micro/nanostructure surfaces, have greatly benefited in terms of low-cost fabrication, scalability, and easy control of geometrical parameters. This review highlights recent advances in 3D micro/nanostructures inspired by nature for diverse potential and advanced applications, including flexible pressure sensors, energy-harvesting devices based on triboelectricity, superhydrophobic/-philic surfaces, and dry/wet adhesive patches.

Thermal Flow Characteristics of a New Micro Flow Sensor with Multiple Temperature Sensing Elements (다단계 온도 감지막을 가진 마이크로 흐름센서의 열전달 특성)

  • Kim Tae Yong;Chung Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.595-600
    • /
    • 2005
  • A micro flow sensor on silicon substrate allows the fabrication of small components where many different functions can be integrated so that the functionality of the sensors can be increased. Further more, the small size of the elements these sensors can be quite fast. A thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. In normal, a mass flow sensor is composed of a central heater and a pair of temperature sensing elements around the heater A new 2-D wide range micro flow sensor structure with three pairs of temperature sensors and a central heater was proposed and numerically simulated by Finite Difference formulation to confirm the feasibility of the flow sensor structure in time domain.

SOI CMOS-Based Smart Gas Sensor System for Ubiquitous Sensor Networks

  • Maeng, Sung-Lyul;Guha, Prasanta;Udrea, Florin;Ali, Syed Z.;Santra, Sumita;Gardner, Julian;Park, Jong-Hyurk;Kim, Sang-Hyeob;Moon, Seung-Eon;Park, Kang-Ho;Kim, Jong-Dae;Choi, Young-Jin;Milne, William I.
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.516-525
    • /
    • 2008
  • This paper proposes a compact, energy-efficient, and smart gas sensor platform technology for ubiquitous sensor network (USN) applications. The compact design of the platform is realized by employing silicon-on-insulator (SOI) technology. The sensing element is fully integrated with SOI CMOS circuits for signal processing and communication. Also, the micro-hotplate operates at high temperatures with extremely low power consumption, which is important for USN applications. ZnO nanowires are synthesized onto the micro-hotplate by a simple hydrothermal process and are patterned by a lift-off to form the gas sensor. The sensor was operated at $200^{\circ}C$ and showed a good response to 100 ppb $NO_2$ gas.

  • PDF

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

Improved hydrogen sensing characteristics of flat type catalytic combustible hydrogen gas sensor of micro-structure (평판형 접촉연소식 마이크로 수소센서의 감지특성 향상)

  • Kim, Chan-Woo;Gwak, Ji-Hye;Chun, Il-Su;Han, Sang-Do;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.202-206
    • /
    • 2009
  • Flat type catalytic combustible hydrogen sensors were fabricated using platinum micro-heaters and sensing material pastes. The platinum micro-heater was formed on an alumina substrate by sputtering method. The paste for the sensing materials was prepared using ${\gamma}-Al_2O_3$ 30 wt%, $SnO_2$ 35 wt%, and Pd/Pt 30 wt% and coated on the platinum micro-heater. The sensing performances were tested for the prepared sensors with different substrate sizes. The micro catalytic combustible hydrogen sensors showed quick response time, high reliability, and good selectivity against various gases(CO, $C_3H_8,\;CH_4$) at low operating temperature of $156^{\circ}\C$.

The Micro Heat Flux Sensor using Electroplated Copper layers (구리 도금층을 이용한 미세 열유속 센서)

  • 오석환;전재철;김무환;이승섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.226-231
    • /
    • 2000
  • New types of the micro heat flux sensor are designed and fabricated using SU-8 and Cu electroplating. And then calibrated under convection environment. The thermal path was made by SU-8 structure and electroplated Cu layers. The bottom surface of the micro heat flux sensor receives the heat flux from the wall, Then the heat flows along the Cu layers and drains out to the environment with producing the temperature difference at the upper layer of Cu. By measuring this temperature difference, the heat flux from the wall can be obtained. The temperature difference is measured by thermopile which is composed of Ni-Cr pairs or Al-chromel pairs. The calibration is accomplished under convection environment because it is most frequent situation. The range of the sensitivity is 0.11~2.02$\mu$V/(㎽/$\textrm{cm}^2$) for the various heat flux and Reynolds numbers.

  • PDF

Development of Micro-machined Heat Flux Sensor by using MEMS technology (MEMS를 이용한 미세 열유속센서의 개발)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1364-1369
    • /
    • 2004
  • New method for the design, fabrication, and calibration of micro-machined heat flux sensor has been developed. Two types of micro-machined heat flux sensor having different thicknesses of the thermal-resistance layer are fabricated using the MEMS technique. Photo-resist patterning using a chrome mask, bulk-etching and copper-nickel sputtering using a shadow mask are applied to make heat flux sensors, which are calibrated in the convection-type heat flux calibration facility. The sensitivity of the device varies with thermal-resistance layer, and hence can be used to measure the heat flux in heat-transfer phenomena.

  • PDF

Thermal Analysis of Silicon Micro-Gas Sensor (실리콘 마이크로 가스센서의 열해석)

  • 정완영;엄구남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.567-570
    • /
    • 2000
  • Thermal simulation of typical stack-type and newly proposed planar-type micro-gas sensors were studied by FEM method. the thermal analysis for the proposed planar structure including temperature distribution over the sensing layer and power consumption of the heater were carried using finite element method by computer simulation and well compared with those of typical stack-type micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of an actual device to investigate the acceptability of the computer simulation.

  • PDF

Correction of Photometric Distortion of a Micro Camera-Projector System for Structured Light 3D Scanning

  • Park, Go-Gwang;Park, Soon-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • This paper addresses photometric distortion problems of a compact 3D scanning sensor which is composed of a micro-size and inexpensive camera-projector system. Recently, many micro-size cameras and projectors are available. However, erroneous 3D scanning results may arise due to the poor and nonlinear photometric properties of the sensors. This paper solves two inherent photometric distortions of the sensors. First, the response functions of both the camera and projector are derived from the least squares solutions of passive and active calibration, respectively. Second, vignetting correction of the vision camera is done by using a conventional method, however the projector vignetting is corrected by using the planar homography between the image planes of the projector and camera, respectively. Experimental results show that the proposed technique enhances the linear properties of the phase patterns that are generated by the sensor.