DOI QR코드

DOI QR Code

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Junyeop Lee (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Dong Hyuk Jung (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Won Oh Lee (S-Package Solution CO., Ltd) ;
  • Byeong Seo Park (S-Package Solution CO., Ltd) ;
  • Daewoong Jung (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH))
  • Received : 2023.07.03
  • Accepted : 2023.07.23
  • Published : 2023.07.31

Abstract

H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

Keywords

Acknowledgement

This work was supported by the Technology Development Program (S3177927), funded by the Ministry of SMEs Startups (MSS), Korea. This study has been conducted with the support of the Korea Institute of Industrial Technology as "Technical support project for research and development of manufacture to improve core components of eco-mobility" (Kitech JF-23-0007). This work was supported by the Korea Innovation Foundation (INNOPOLIS) grant funded by the Korea government(MSIT) (2020-DD-UP-0348).

References

  1. S. Ghaderahmadi, M. Kamkar, N. Tasnim, M. Arjmand, and M. Hoorfar, "A review of low-temperature H2S gas sensor: fabrication and mechanism", New J. Chem., Vol. 45, No. 38, pp. 17727-17752, 2021. https://doi.org/10.1039/D1NJ02468J
  2. W. Mickelson, A. Sussman, and A. Zettl, "Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor", Appl. Phys. Lett., Vol. 100, No. 17, pp. 173110-173113, 2012. https://doi.org/10.1063/1.3703761
  3. L. Mei, Y. Chen, and J. Ma, "Gas sensing of SnO2 Nanocrystal Revised: Developing Ultra-Sensitive Sensors for Detecting the H2S Leakage of Biogas", Sci. Rep., Vol. 4, No. 1, pp. 6028-6035, 2014. https://doi.org/10.1038/srep06028
  4. C. Duc, M. L. Boukhenane, J. L. Wojkiewicz, and N. Redon, "Hydrogen Sulfide Detection by Sensors Based on Conductive Polymers: A Review", Front. Mater., Vol. 7, No. 215, pp. 1-10, 2020. https://doi.org/10.3389/fmats.2020.00001
  5. V. Balasubramani, A. N. Ahamed, S. Chandraleka, K. K. Kumar, M. R. Kuppusamy, and T. M. Sridhar, "Highly Sensitive and Selective H2S Gas Sensor Fabricated with β-Ga2O3/rGO", ECS J. Solid State Sci. Technol., Vol. 9, No. 5, pp. 055009-0550014, 2020. https://doi.org/10.1149/2162-8777/ab9a18
  6. K. Yao, D. Caruntu, Z. Zeng. M., J. Chen, C. J. O'Connor, and W. Zhou, "Parts per Billion-Level H2S Detection at Room Temperature Based on Self-Assembled In2O3 Nanoparticles", J. Phys. Chem. C, Vol. 113, No. 33, pp. 14812-14817, 2009. https://doi.org/10.1021/jp905189f
  7. S. C. Zhang, Y. W. Huang, Z. Kuang, S. Y. Wang, W. L. Song, D. Y. Ao, W. Liu, and Z. J. Li, "Solvothermal Synthesized In2O3 Nanoparticles for ppb Level H2S Detection", Nanosci. Nanotechnol. Lett., Vol. 7, No. 6, pp. 455-461, 2015. https://doi.org/10.1166/nnl.2015.1993
  8. J. Kim, and K. Yong, "Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing", J. Phys. Chem. C., Vol. 115, No. 15, pp. 7218-7224, 2011.
  9. S. M., Zhang, P. P. Zhang, Y. Wang, Y. Y. Ma, J. Zhong, and X. H. Sun, "Facile Fabrication of Well-Ordered Porous Cu-Doped SnO2 Thin Film for H2S Sensing", ACS Appl. Mater. Interfaces, Vol. 6, No. 17, pp. 14975-14980, 2014. https://doi.org/10.1021/am502671s
  10. Y. B. Shen, B. Q. Zhang, X. M. Cao, D. Z. Wei, J. W. Ma, L. J. Jia, S. L. Gao, B. Y. Cui, and Y. C. Jin, "Microstructure and Enhanced H2S Sensing Properties of Pt-Loaded WO3 Thin Films", Sens. Actuators B. Chem., Vol. 193, pp. 273-279, 2014. https://doi.org/10.1016/j.snb.2013.11.106
  11. Y. W. Huang, W. M. Chen, S. C. Zhang, Z. Kuang, D. Y. Ao, N. R. Alkurd, W. L. Zhou, W. Liu, W. Z. Shen, and Z. J. Li, "A High Performance Hydrogen Sulfide Gas Sensor Based on Porous α-Fe2O3 Operates at Room-Temperature", Appl. Surf. Sci., Vol. 351, pp. 1025-1033, 2015. https://doi.org/10.1016/j.apsusc.2015.06.053
  12. Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, and Y. Fu, "A Fast Response & Recovery H2S Gas Sensor Based on α-Fe2O3 Nanoparticles with ppb Level Detection Limit", J. Hazard. Mater., Vol. 300, pp. 167-174, 2015. https://doi.org/10.1016/j.jhazmat.2015.07.003
  13. S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, and R. Resel, "Gas Sensing Properties of Novel CuO Nanowire Devices", Sens. Actuators B. Chem., Vol. 187, pp. 50-57, 2013. https://doi.org/10.1016/j.snb.2012.09.034
  14. S. W. Choi, A. Katoch, J. Zhang, and S. S. Kim, "Electrospun Nanofibers of CuO-SnO2 Nanocomposite as Semiconductor Gas Sensors for H2S Detection", Sens. Actuators B. Chem., Vol. 176, pp. 585-591, 2013. https://doi.org/10.1016/j.snb.2012.09.035
  15. X. Li, Y. Wang, Y. Lei, and Z. Gu, "Highly Sensitive H2S Sensor Based on Template Synthesized CuO Nanowires", RSC Adv., Vol. 2, No.2, pp. 2302-2307, 2012. https://doi.org/10.1039/c2ra00718e
  16. F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. H. Yang, and Y. Qin, "CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability", J. Phys. Chem. C, Vol. 114, No. 45, pp. 19214-19219, 2010. https://doi.org/10.1021/jp106098z
  17. T. N. H. Tran, D. H. Nguyen, V. D. Nguyen, M. H. Chu, T. T. L. Dang, V. T. Nguyen, H. P. Nguyen, and V. H. Nguyen, "An effective H2S sensor based on SnO2 nanowires decorated with NiO nanoparticles by electron beam evaporation", RSC Adv., Vol. 9, No. 24, pp. 13887-13895, 2019. https://doi.org/10.1039/C9RA01105F
  18. Q. Zhou, L. Xu, A. Umar, W. Chen, and R. Kumar, "Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications", Sens. Actuators B. Chem., Vol. 256, pp. 656-664, 2018. https://doi.org/10.1016/j.snb.2017.09.206
  19. P. M. Bulemo, H. J. Cho, D. H. Kim, and I. D. Kim, "Facile Synthesis of Pt-Functionalized Meso/Macroporous SnO2 Hollow Spheres through in Situ Templating with SiO2 for H2S Sensors", ACS Appl. Mater. Interfaces., Vol. 10, No. 21, pp. 18183-18191, 2018. https://doi.org/10.1021/acsami.8b00901
  20. I. S. Hwang, J. K. Choi, S. J. Kim, K. Y. Dong, J. H. Kwon, B. K. Ju, and J. H. Lee, "Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO", Sens. Actuators B. Chem., Vol. 142, No. 1, pp. 105-110, 2009. https://doi.org/10.1016/j.snb.2009.07.052
  21. Z. Song, J. Liu, Q. Liu, H. Yu, W. Zhang, Y. Wang, Z. Huang, J. Zang, and H. Liu, "Enhanced H2S gas sensing properies based on SnO2 quantum wire/reduced graphene oxide nanocomposites: Equilibrium and kinetics modeling", Sens. Actuators B. Chem., Vol. 249, pp. 632-638, 2017. https://doi.org/10.1016/j.snb.2017.04.023
  22. Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, and S. Zhu, "Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials", Ceram. Int., Vol. 44, No. 4, pp. 4392-4399, 2018. https://doi.org/10.1016/j.ceramint.2017.12.038
  23. T. Itoh, T. Nakashima. T. Akamatsu, N. Izu, and W. Shin, "Nonanal gas sensing properties of platinum, palladium, and gold-loaded tin oxide VOCs sensor", Sens. Actuators B. Chem., Vol. 187, pp. 135-141, 2013. https://doi.org/10.1016/j.snb.2012.09.097
  24. V. T. Pham, D. H. Nguyen, V. D. Nguyen, T. T. L. Dang , and V. H. Nguyen, "Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles", Sens. Actuators B. Chem., Vol. 223, pp. 453-460, 2016. https://doi.org/10.1016/j.snb.2015.09.108