DOI QR코드

DOI QR Code

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Sang-Woo Kim (Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University)
  • Received : 2023.07.10
  • Accepted : 2023.07.23
  • Published : 2023.07.31

Abstract

Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Keywords

Acknowledgement

The authors acknowledge financial support by the Basic Science Research Program (2022R1A3B1078291, Research Leader Program) through the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT). S.-W.K. acknowledges the Yonsei World-Class Fellow Program funded by Youn Jae Lee.

References

  1. Z. L. Wang and J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays", Science, Vol. 312, No. 5771, pp. 242-246, 2006.  https://doi.org/10.1126/science.1124005
  2. X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-Current Nanogenerator Driven by Ultrasonic Waves", Science, Vol. 316, No.5821, pp. 102-105, 2007.  https://doi.org/10.1126/science.1139366
  3. Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors", Nano Energy, Vol. 14, pp. 3-14, 2015.  https://doi.org/10.1016/j.nanoen.2014.11.038
  4. S. Cju, Y. Cui, and N. Liu, "The path towards sustainable energy", Nat. Mater., Vol 16, No. 1, pp. 16-22, 2017.  https://doi.org/10.1038/nmat4834
  5. F. R. Fan, Z. Q. Tian, and Z. L. Wang, "Flexible triboelectric generator", Nano Energy, Vol. 1, No. 2, pp. 328-334, 2012.  https://doi.org/10.1016/j.nanoen.2012.01.004
  6. S. S. Kwak, H. J. Yoon, and S. W. Kim, "Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics", Adv. Funct. Mater., Vol. 29, No. 2, p. 1804533, 2019. 
  7. Z. Zhao, C. Yan, Z. Liu, X. Fu, L. M. Peng, Y. Hu, and Z. Zheng, "Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns", Adv. Mater., Vol. 28, No. 46, pp. 10267-10274, 2016.  https://doi.org/10.1002/adma.201603679
  8. X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, "Wearable Power-Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiber-Shaped Dye-Sensitized Solar Cells", Adv. Energy Mater., Vol. 6, No. 20, p. 1601048, 2016. 
  9. F. Yi, L. Lin, S. Niu, P. K. Yang, Z. Wang, J. Chen, Y. Zhou, Y. Zi, J. Wang, Q. Liao, Y. Zhang, and Z. L. Wang, "Stretchable-Rubber-Based Triboelectric Nanogenerator and Its Application as Self-Powered Body Motion Sensors", Adv. Funct. Mater., Vol. 25, No. 24, pp. 3688-3696, 2015.  https://doi.org/10.1002/adfm.201500428
  10. P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, and Z. L. Wang, "Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring", Adv. Funct. Mater., Vol. 24, No. 37, pp. 5807-5813, 2014.  https://doi.org/10.1002/adfm.201401267
  11. R. Zhang and H. Olin, "Material choices for triboelectric nanogenerators: A critical review", EcoMat, Vol. 2, No. 4, p. e12062, 2020. 
  12. Y. Zhu, T. Zhao, F. Sun, C. Jia, H. Ye, Y. Jiang, K. Wang, C. Huang, Y. Xie, and Y. Mao, "Multi-functional triboelectric nanogenerators on printed circuit board for metaverse sport interactive system", Nano Energy, Vol. 113, p. 108520, 2023. 
  13. H. Xiang, Y. Zeng, X. Huang, N. Wang, X. Cao, and Z. L. Wang, "From Triboelectric Nanogenerator to Multifunctional Triboelectric Sensors: A Chemical Perspective toward the Interface Optimization and Device Integration", Small, Vol. 18, No. 43, p. 210722, 2022. 
  14. R. Hinchet, H. J. Yoon, H. Ryu, M. K. Kim, E. K. Choi, D. S. Kim, and S. W. Kim, "Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology", Science, Vol. 365, No. 6452, pp. 491-494, 2019.  https://doi.org/10.1126/science.aan3997
  15. H. Ryu, H. Park, M. K. Kim, B. Kim, H. S. Myoung, T. Y. Kim, H. J. Yoon, S. S. Kwak, J. Kim, T. H. Hwang, E. K. Choi, and S. W. Kim, " Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators", Nat. Commun., Vol. 12, No. 1, pp. 4374(1)-4374(9), 2021.  https://doi.org/10.1038/s41467-020-20314-w
  16. D. M. Lee, N. Rubab, I. Hyun, W. Kang, Y. J. Kim, M. Kang, B. O. Choi, and S. W. Kim, "Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics", Sci. Adv., Vol. 8, No. 1, p. eabl8423, 2022. 
  17. G. Q. Gu, C. B. Han, J. J. Tian, T. Jiang, C. He, C. X. Lu, Y. Bai, J. H. Nie, Z. Li, and Z. L. Wang, "Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter", Nano Res., Vol. 11, No. 8, pp. 4090-4101, 2018.  https://doi.org/10.1007/s12274-018-1992-1
  18. Z. Y. Huo, Y. J. Kim, I. Y. Suh, D. M. Lee, J. H. Lee, Y. Du, S. Wang, H. J. Yoon, and S. W. Kim, "Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field", Nat. Commun., Vol. 12, No. 1, pp. 3693(1)-3693(11), 2021.  https://doi.org/10.1038/s41467-020-20314-w
  19. J. He, X. Guo, C. Pan, G. Cheng, M. Zheng, Y. Zi, H. Cui, and X. Li, "High-output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application", Nanotechnol., Vol. 34, No. 38, p. 385403, 2023. 
  20. W. Ding, J. Zhou, J. Cheng, Z. Wang, H. Guo, C. Wu, S. Xu, Z. Wu, X. Xie, and Z. L. Wang, "TriboPump: A Low-Cost, Hand-Powered Water Disinfection System", Adv. Energy Mater., Vol. 9, No. 27, p. 1901320, 2019. 
  21. Z. Y. Huo, D. M. Lee, J. M. Jeong, Y. J. Kim, J. Kim, I. Y. Suh, P. Xiong, and S. W. Kim, "Microbial Disinfection with Supercoiling Capacitive Triboelectric Nanogenerator", Adv. Energy Mater., Vol. 12, No. 15, p. 2103680, 2022. 
  22. S. Cho, Z. Hanif, Y. Yun, Z.A. Khan, S. Jang, Y. Ra, Z. H. Lin, M. La, S. K. Park, and D. Choi, "Triboelectrification-driven microbial inactivation in a conductive cellulose filter for affordable, portable, and efficient water sterilization", Nano Energy, Vol. 88, p. 106228, 2021. 
  23. M. Kang, N. Y. Jang, Y. J. Kim, H. J. Ro, D. Kim, Y. Kim, H. T. Kim, H. M. Kwon, J. H. Ahn, B. O. Choi, N. H. Cho, and S. W. Kim, "Virus blocking textile for SARS-CoV-2 using human body triboelectric energy harvesting", Cell Rep. Phys. Sci., Vol. 3, No. 4, pp. 100813(1)-100813(12), 2022.  https://doi.org/10.1016/j.xcrp.2022.100813
  24. Y. Cho, Y. Son, J. Ahn, H. Lim, S. Ahn, J. Lee, P. K. Bae, and I. D. Kim, "Multifunctional Filter Membranes Based on Self-Assembled Core-Shell Biodegradable Nanofibers for Persistent Electrostatic Filtration through the Triboelectric Effect", ACS Nano, Vol. 16, No. 11, pp. 19451-19463, 2022.  https://doi.org/10.1021/acsnano.2c09165
  25. I. Y. Suh, Y. J. Kim, P. Zhao, D. S. Cho, M. Kang, Z. Y. Huo, and S. W. Kim, "Self-powered microbial blocking textile driven by triboelectric charges", Nano Energy, Vol. 110, p. 108343, 2023. 
  26. Y. Zhang, Z. Zhou, L. Sun, Z. Liu, Z. Zia, and T. H. Tao, "Genetically Engineered" Biofunctional Triboelectric Nanogenerators Using Recombinant Spider Silk", Adv. Mater., Vol. 30, No. 50, p. 1805722, 2018. 
  27. X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai, R. Cheng, D. Liu, X. Gao, J. Wang, and Z. L. Wang, "A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators", Sci. Adv., Vol. 6, No. 26, pp. eaba9624(1)-eaba9624(10), 2020. 
  28. I. M. Imani, B. Kim, X. Xiao, N. Rubab, B. J. Park, Y. J. Kim, P. Zhao, M. Kang, and S. W. Kim, "Ultrasound-Driven On-Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity", Adv. Sci., Vol. 10, No. 3, pp. 2204801(1)-2204801(9), 2023.