• Title/Summary/Keyword: Micro-scale

Search Result 1,171, Processing Time 0.03 seconds

Characteristics of Manganese Nodule Distribution Pattern using Sub-bottom Profile and Deep Tow Imaging System Data (천부지층자료와 심해영상자료를 활용한 망간단괴 분포 특성 연구)

  • Ko, Young-Tak;Park, Cheong-Kee;Kim, Jong-Guk;Lee, Tae-Gook
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.427-441
    • /
    • 2006
  • Sub-bottom profiler and deep tow imaging system were performed in the KODOS (Korea Deep Ocean Study) area in order to find out controlling factor in nodule formation from the relationship between distribution of Mn nodules and micro-scale topographic change. Although abundance of r- and t- types nodules increase on the seafloor of thin upper transparent layer, no significant correlation was found between the thickness of upper transparent layer and total nodule abundance in the study area. Our results show that distribution pattern of nodule, including abundance, continuity, and facies, can vary with small scale in similar abyssal plain.

  • PDF

Fabrication of nano/micro hybrid compositesusing a discharge flocking device (방전식모 장치를 이용한 나노/마이크로 하이브리드 복합재 제조)

  • Lee, Byung-Kon;Lee, Hak-Gu;Lee, Sang-Bok;Lee, Won-Oh;Yi, Jin-Woo;Um, Moon-Kwang;Kim, Byung-Sun;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • One of the biggest challenges in the nano-field is how to effectively disperse nano-scale particles, especially CNTs, which are strongly agglomerated by intermolecular van der Waals forces. This study suggests a new method, discharge flocking, in order to disperse nano-scale particles effectively, which combines corona discharge phenomenon and a traditional electrostatic flocking process. In order to evaluate the discharge flocking process, composite specimens were fabricated by the process and RFI(resin film infusion) process, and then the mechanical and electrical properties of the specimens were measured and compared. Moreover, the evaluation of gas discharge effect on the CNTs and epoxy was performed to compare the mechanical and electrical properties of the composite specimens including the plasma treated CNTs. The experimental results showed that the electrical and mechanical properties of the specimens fabricated by the discharge flocking process were similar to those of the RFI process. In addition, plasma treated CNTs were not affected by gas discharge during the discharge flocking process.

Errors in Estimated Temporal Tracer Trends Due to Changes in the Historical Observation Network: A Case Study of Oxygen Trends in the Southern Ocean

  • Min, Dong-Ha;Keller, Klaus
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.189-195
    • /
    • 2005
  • Several models predict large and potentially abrupt ocean circulation changes due to anthropogenic greenhouse-gas emissions. These circulation changes drive-in the models-considerable oceanic oxygen trend. A sound estimate of the observed oxygen trends can hence be a powerful tool to constrain predictions of future changes in oceanic deepwater formation, heat and carbon dioxide uptake. Estimating decadal scale oxygen trends is, however, a nontrivial task and previous studies have come to contradicting conclusions. One key potential problem is that changes in the historical observation network might introduce considerable errors. Here we estimate the likely magnitude of these errors for a subset of the available observations in the Southern Ocean. We test three common data analysis methods south of Australia and focus on the decadal-scale trends between the 1970's and the 1990's. Specifically, we estimate errors due to sparsely sampled observations using a known signal (the time invariant, temporally averaged, World Ocean Atlas 2001) as a negative control. The crossover analysis and the objective analysis methods are for less prone to spatial sampling location biases than the area averaging method. Subject to numerous caveats, we find that errors due to sparse sampling for the area averaging method are on the order of several micro-moles $kg^{-1}$. for the crossover and the objective analysis method, these errors are much smaller. For the analyzed example, the biases due to changes in the spatial design of the historical observation network are relatively small compared to the tends predicted by many model simulations. This raises the possibility to use historic oxygen trends to constrain model simulations, even in sparsely sampled ocean basins.

Adventitious Root Cultures of Panax ginseng C.V. Meyer and Ginsenoside Production through Large-Scale Bioreactor System

  • Hahn, Eun-Joo;Kim, Yun-Soo;Yu, Kee-Won;Jeong, Cheol-Seung;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The adventitious root of Panax ginseng C.A. Meyer is regarded as an efficient alternative to cell culture or hairy root culture for biomass production due to its fast growth and stable metabolite production. To determine optimal culture conditions for the bioreactor culture of ginseng roots, experiments have been conducted on physical and chemical factors such as bioreactor type, dissolved oxygen, gas supply, aeration, medium type, macro- and micro-elements, medium supplement during culture period, sucrose concentration, osmotic agents, medium pH and light. Elicitation is a key step to increase ginsenoside accumulation in the adventitious roots but biomass growth is severely inhibited by elicitor treatment. To obtain high ginsenoside content with avoiding biomass decrease, we applied two-stage bioreactor culture system. Ginseng adventitious roots were cultured for 40 days to maximize biomass increase followed by elicitation for 7 days to enhance ginsenoside accumulation. We also experimented on types and concentrations of jasmonate to determine optimal elicitation methods. In this paper, we discussed several factors affecting the root propagation and ginsenoside accumulation. Based on the results obtained from previous experiments we have established large-scale bioreactor system (1 ton-10 ton) for the efficient production of ginseng adventitious roots and bioactive compounds including ginsenoside. Still, experiments are on going in our laboratory to determine other bioactive compounds having effects on diet, high blood pressure, DPPH elimination and increasing memories.

Failure Analysis on Scale Formation of Thermostat Housing and Development of Accelerated Test Methodology (써모스타트 하우징의 침전물 생성에 관한 고장분석 및 가속시험법 개발)

  • Cho, In-Hee;Hyung, Sin-Jong;Choi, Kil-Yeong;Weon, Jong-Il
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.177-185
    • /
    • 2009
  • The failure analysis of scales deposited on automotive thermostat housing has been carried out. Observations using energy dispersive spectroscopy and electron probe micro analyzer indicate that the main components of scales are some of additives of coolant used. For a detailed investigation of organic matters pyrolysis-GC/MS is employed. The result shows that the main organic component is benzoic acid and furthermore, a small amount of acetophenone, benzene and phenyl group is detected. Based on the results of failure analysis performed, the scales on automotive thermostat housing appear due to the deposition of coolant components, followed by crevice corrosion, into gap between housing and rubber horse. New accelerated test methodology, which could mimic the scale formation and the crevice corrosion on thermostat housing, is developed considering the above results. In order to reproduce the real operating conditions, the accelerating factors, i.e. temperature and humidity, are changed and programmed. The reproducibility of the accelerated test proposed is confirmed after analyzing the scales obtained from the accelerated test.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Analysis on the Modification of Near-wall Turbulent Characteristics of Temperature Field in a Channel imposed with Linearly Increasing Wall Disturbance (선형적으로 증가하는 벽면교란이 벽 근처 난류 온도장의 특성 변화에 미치는 영향 해석)

  • Park, Soo Hyung;Byun, Yung-Hwan;Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.101-112
    • /
    • 2013
  • Large eddy simulation was performed to investigate the effect of linearly increasing wall disturbance on the modification of turbulent characteristics of temperature field in the vicinity of the wall. It was noted that temperature variance increased monotonically whereas temperature dissipation decreased significantly, resulting in a noticeable reduction in both time and length-scales. A sudden drop in turbulent Prandtl number down to around 0.25 in the near-wall region indicated that the similarity between velocity and temperature fields decreases near the wall as a result of linear wall disturbance.

The System Of Microarray Data Classification Using Significant Gene Combination Method based on Neural Network. (신경망 기반의 유전자조합을 이용한 마이크로어레이 데이터 분류 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1243-1248
    • /
    • 2008
  • As development in technology of bioinformatics recently mates it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. In this thesis, we used CDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer. It analyzed and compared performance of each of the experiment result using existing DT, NB, SVM and multi-perceptron neural network classifier combined the similar scale combination method after constructing class classification model by extracting significant gene list with a similar scale combination method proposed in this paper through normalization. Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) represented the accuracy of 98.84%, which show that it improve classification performance than case to experiment using other classifier.

Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array (PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터)

  • Lee, Min-Seon;Na, Yong-Hyeon;Park, Jin-Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.