DOI QR코드

DOI QR Code

Errors in Estimated Temporal Tracer Trends Due to Changes in the Historical Observation Network: A Case Study of Oxygen Trends in the Southern Ocean

  • Min, Dong-Ha (Department of Geosciences, The Pennsylvania State University) ;
  • Keller, Klaus (Department of Geosciences, The Pennsylvania State University)
  • Published : 2005.06.30

Abstract

Several models predict large and potentially abrupt ocean circulation changes due to anthropogenic greenhouse-gas emissions. These circulation changes drive-in the models-considerable oceanic oxygen trend. A sound estimate of the observed oxygen trends can hence be a powerful tool to constrain predictions of future changes in oceanic deepwater formation, heat and carbon dioxide uptake. Estimating decadal scale oxygen trends is, however, a nontrivial task and previous studies have come to contradicting conclusions. One key potential problem is that changes in the historical observation network might introduce considerable errors. Here we estimate the likely magnitude of these errors for a subset of the available observations in the Southern Ocean. We test three common data analysis methods south of Australia and focus on the decadal-scale trends between the 1970's and the 1990's. Specifically, we estimate errors due to sparsely sampled observations using a known signal (the time invariant, temporally averaged, World Ocean Atlas 2001) as a negative control. The crossover analysis and the objective analysis methods are for less prone to spatial sampling location biases than the area averaging method. Subject to numerous caveats, we find that errors due to sparse sampling for the area averaging method are on the order of several micro-moles $kg^{-1}$. for the crossover and the objective analysis method, these errors are much smaller. For the analyzed example, the biases due to changes in the spatial design of the historical observation network are relatively small compared to the tends predicted by many model simulations. This raises the possibility to use historic oxygen trends to constrain model simulations, even in sparsely sampled ocean basins.

Keywords

References

  1. Alley, R.B. et al. 2003. Abrupt climate change. Science, 299(5615), 2005-2010. https://doi.org/10.1126/science.1081056
  2. Bindoff, N.L. and T.J. McDougall. 2000. Decadal changes along an Indian Ocean section at $32^{\circ}S$ and their interpretation. J. Phys. Oceanogr., 30, 1207-1222. https://doi.org/10.1175/1520-0485(2000)030<1207:DCAAIO>2.0.CO;2
  3. Bretherton, F.P., R.E. Davis, and C.B. Fandry. 1976. A technique for the objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559-582.
  4. Broecker, W.S. 1997. Thermohaline circulation, the Achilles heel o f o ur c limate s ystem: W ill man made $CO_{2}$ upset the current balance? Science, 278, 1582-1588. https://doi.org/10.1126/science.278.5343.1582
  5. Conkright, M.E. et al. 2002a. World Ocean Database 2001, Volume 1: Introduction. NOAA Atlas NESDIS 42, U.S. Government Printing Office, Washington, D.C.
  6. Conkright, M.E. et al. 2002b. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, National Oceanographic Data Center, Silver Spring, MD.
  7. Cubasch, U. and G.A. Meehl. 2001. Projections of future climate change, Climate Change 2001 - The scientific basis. p. 526-582. In: Contribution of working group I of the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  8. Diggs, S., J. Kappa., D. Kinkade, and J. Swift. 2002. WOCE Version 3.0. Scripps Institution of Oceanography, University of California, San Diego.
  9. Emerson, S., S. Mecking, and J. Abell. 2001. The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles, 15, 535-554. https://doi.org/10.1029/2000GB001320
  10. Garcia, H., A. Cruzado, and J. Escanez. 1998. Decadal-scale chemical variability in the subtropical North Atlantic deduced from nutrient and oxygen data. J. Geophys. Res., 103(2), 2817-2830. https://doi.org/10.1029/97JC03037
  11. Garcia, H., J. Antonov, T. Boyer, S. Levitus, and R.A. Locarnini. 2003. On oxygen content variability in the upper ocean. EOS Trans. AGU 2004 Ocean Sci. Meet. Suppl., 84(52), OS32L-04.
  12. Gruber, N., K. Keller, and R.M. Key. 2000. What story is told by oceanic tracer concentrations? Science, 290, 455-456. https://doi.org/10.1126/science.290.5491.455
  13. Keeling, R.F. and H. Garcia. 2002. The change in oceanic $O_{2}$ inventory associated with recent global warming. Proc. Nat. Acad. Sci., 99, 7848-7853. https://doi.org/10.1073/pnas.122154899
  14. Keller, K., R. Slater, M. Bender, and R.M. Key. 2002. Possible biological or physical explanations for decadal scale trends in North Pacific nutrient concentrations and oxygen utilization. Deep-Sea Res. II, 49, 345-362. https://doi.org/10.1016/S0967-0645(01)00106-0
  15. Latif, M., E. Roeckner, U. Mikolajewski, and R. Voss. 2000. Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13, 1809-1813. https://doi.org/10.1175/1520-0442(2000)013<1809:L>2.0.CO;2
  16. Matear, R.J., A.C. Hirst, and B.I. McNeil. 2000. Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosys., 1, 2000GC000086. https://doi.org/10.1029/2000GC000086
  17. Orsi, A.H., T. Whitworth, and W.D. Nowlin. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42(5), 641-673. https://doi.org/10.1016/0967-0637(95)00021-W
  18. Pahlow, M. and U. Riebesell. 2000. Temporal trends in deep ocean Redfield ratios. Science, 287, 831-833. https://doi.org/10.1126/science.287.5454.831
  19. Peng, T.-H. and W.S. Broecker. 1984. Ocean life cycles and the atmospheric $CO_{2}$ content. J. Geophys. Res., 89(5), 8170-8180. https://doi.org/10.1029/JC089iC05p08170
  20. Plattner, G.-K., F. Joos, and T.F. Stocker. 2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem. Cycles, 16, 1096, doi:10.1029/2001GB001746.
  21. Ross, A.A. et al. 1999. Nutrient data differences between crossings of WOCE hydrographic lines. EOS, 80(49), supp. OS5.
  22. Rutherford, S., M.E. Mann, T.L. Delworth, and R.J. Stouffer. 2003. Climate field reconstruction under stationary and nonstationary forcing. J. Climate, 16(3), 462-479. https://doi.org/10.1175/1520-0442(2003)016<0462:CFRUSA>2.0.CO;2
  23. Sarmiento, J.L., T.M. Hughes, R.J. Stouffer, and S. Manabe. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245-249. https://doi.org/10.1038/30455
  24. Shaffer, G., O. Leth, O. Ulloa, J. Bendtsen, and G. Danen. 2000. Warming and circulation change in the Eastern South Pacific Ocean. Geophy. Res. Lett., 27(9), 1247-1250. https://doi.org/10.1029/1999GL010952
  25. WHPO. 1994. WOCE Hydrographic Programme Office: Requirements for WOCE hydrographic programme data reporting.
  26. Wilks, D.S. 1997. Resampling hypothesis tests for autocorrelated fields. J. Climate, 10(1), 65-82. https://doi.org/10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2
  27. Zhang, Y.-Z., C.W. Mo rdy, L .I. Go rdo n, A. Ro ss, and H.E. Garcia. 2000. Temporal trends in deep ocean Redfield ratios. Science, 289, 1839a. https://doi.org/10.1126/science.289.5486.1839a

Cited by

  1. Measuring oxygen concentrations to improve the detection capabilities of an ocean circulation observation array vol.113, pp.C2, 2008, https://doi.org/10.1029/2007JC004113
  2. Observations of change in the Southern Ocean vol.364, pp.1844, 2006, https://doi.org/10.1098/rsta.2006.1794
  3. Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation vol.77, pp.1, 2008, https://doi.org/10.1016/j.pocean.2008.01.007
  4. Dissolved oxygen change and freshening of Antarctic Bottom water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013 vol.114, 2015, https://doi.org/10.1016/j.dsr2.2014.05.016