• 제목/요약/키워드: Micro-nano hierarchical structures

검색결과 19건 처리시간 0.037초

마이크로-나노 구조가 있는 표면에서의 액적 계면 거동 현상에 대한 연구 (Interfacial Behavior of Water Droplet on Micro-Nano Structured Surfaces)

  • 곽호재;유동인;김무환;박현선;키요후미 모리야마;안호선;김동억
    • 대한기계학회논문집B
    • /
    • 제39권5호
    • /
    • pp.449-453
    • /
    • 2015
  • 최근 표면개질을 통한 젖음성 향상을 위하여, 마이크로와 나노 구조가 계층적(hierarchical)으로 존재하는 표면에 대한 연구가 공학 및 다양한 연구 분야에서 활발하게 진행되고 있다. 계층적구조가 존재하는 표면에서 초친수성(super-hydrophillic)은 대개 물방울(water droplet)의 계면 거동에 의해 그 특성이 확인된다. 따라서, 본 연구에서는 초친수성 표면위에서의 물방울 계면 거동에 대한 실험적 연구를 수행하였다. 포토리소그래피(photo lithography)공정과 건식 식각공정을 이용하여, 정량적으로 표면을 제작하였으며, 실험 표면에서의 계면 거동은 초고속카메라로 가시화하였다. 가시화 자료를 바탕으로, 물방울 계면거동은 표면에 존재하는 마이크로 및 나노구조의 지형학적 특성에 의해 영향을 받음을 확인하였다.

Bioinspired Metal Surfaces by Plasma Treatment

  • 유의선;고태준;오규환;문명운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.97-97
    • /
    • 2013
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Bioinspired Metal Surfaces with Extreme Wettability Contrast

  • 유의선;허은규;고태준;이광렬;오규환;문명운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.122-122
    • /
    • 2012
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

모세관 리소그라피를 이용한 고종횡비 나노구조 형성법 (Capillary-driven Rigiflex Lithography for Fabricating High Aspect-Ratio Polymer Nanostructures)

  • 정훈의;이성훈;김필남;서갑양
    • 한국가시화정보학회지
    • /
    • 제5권1호
    • /
    • pp.3-8
    • /
    • 2007
  • We present simple methods for fabricating high aspect-ratio polymer nanostructures on a solid substrate by rigiflex lithography with tailored capillarity and adhesive force. In the first method, a thin, thermoplastic polymer film was prepared by spin coating on a substrate and the temperature was raised above the polymer's glass transition temperature ($T_g$) while in conformal contact with a poly(urethane acrylate) (PUA) mold having nano-cavities. Consequently, capillarity forces the polymer film to rise into the void space of the mold, resulting in nanostructures with an aspect ratio of ${\sim}4$. In the second method, very high aspect-ratio (>20) nanohairs were fabricated by elongating the pre-formed nanostructures upon removal of the mold with the aid of tailored capillarity and adhesive force at the mold/polymer interface. Finally, these two methods were further used to fabricate micro/nano hierarchical structures by sequential application of the molding process for mimicking nature's functional surfaces such as a lotus leaf and gecko foot hairs.

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography

  • Yoon Bo Kyung;Hwang Wonseok;Park Youn Jung;Hwang Jiyoung;Park Cheolmin;Chang Joonyeon
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.435-440
    • /
    • 2005
  • This study describes a method where the match of two different length scales, i.e., the patterns from self-assembled block copolymer (<50 nm) and electron beam writing (>50 nm), allow the nanometer scale pattern mask. The method is based on using block copolymers containing a poly(methyl methacrylate) (PMMA) block, which is subject to be decomposed under an electron beam, as a pattern resist for electron beam lithography. Electron beam on self assembled block copolymer thin film selectively etches PMMA microdomains, giving rise to a polymeric nano-pattern mask on which subsequent evaporation of chromium produces the arrays of Cr nanoparticles followed by lifting off the mask. Furthermore, electron beam lithography was performed on the micropatterned block copolymer film fabricated by micro-imprinting, leading to a hierarchical self assembled pattern where a broad range of length scales was effectively assembled, ranging from several tens of nanometers, through submicrons, to a few microns.

나노-마이크로 하이브리드 3차원 적층 패턴의 제조 (Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns)

  • 박태완;정현성;방지원;박운익
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.387-392
    • /
    • 2018
  • Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석 (Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy)

  • 김창연;김은경;전태훈;남승원;김윤중
    • Applied Microscopy
    • /
    • 제40권3호
    • /
    • pp.155-162
    • /
    • 2010
  • 뼈는 단계별 (hierarchical) 구조를 가진 복합 재료이며 독특한 구조와 기계적 특성 때문에 재료공학 분야에서 많이 연구되어져 왔다. 뼈는 주로 hydroxyapatite, 콜라겐과 물로 구성된 층판형 유 무기 재료 복합체이다. 주요 무기물로써 hydroxyapatite로 잘 알려진 calcium phosphate를 통하여 뼈는 특유의 강도를 유지하게 된다. 본 실험에서는 광학 현미경(LM)과 투과전자현미경(TEM)을 이용하여 토끼와 닭 대퇴골의 구조를 연구하였다. 구성물질 분석은 대퇴골의 calcium, potassium, oxygen 분포 변화를 알아보는데 이용하였다. 실험은 두 구조 범위에 중점을 두었다: micro scale에서 치밀골의 배열을, nano scale에서 콜라겐 섬유와 apatite 결정을 관찰하였다. Micro scale에서 닭과 토끼 대퇴골 구조의 뚜렷한 차이점이 발견되었다. Nano scale에서는 apatite 결정의 모양과 크기 그리고 콜라겐의 배열을 비교 분석하였다. 그 결과 토끼와 닭은 종이 다름에도 불구하고 nano scale에서는 화학성분과 구조가 매우 유사한 것으로 나타났다.

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF