• 제목/요약/키워드: Micro-gas turbine

검색결과 140건 처리시간 0.021초

바이오가스 마이크로 가스터빈 성능해석 (Performance Analysis of Bio-gas Micro Gas Turbine System)

  • 허광범;박정극;임상규;김재훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.239-242
    • /
    • 2008
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. In this context, the Micro Gas Turbines (MGT) by using Bio-gas is being considered as a promising solution. In order to propose a feasible concept of those technologies such as improving environmental effect and economics, we performed a sensitivity study for a biomass fueled MGT using a simulation model. The study consists of 1) the fundamental modeling using manufacturer's technical specifications, 2) the correction with the experimental data, and 3) the prediction of off-design characteristics. The performance analysis model was developed by PEPSE-GT 72, commercial steam/gas turbine simulation technicque.

  • PDF

분산발전을 위한 가스터빈-연료전지 하이브리드 시스템 (Gas Turbine and Fuel Cell Hybrid System for Distributed Power Generation)

  • 김재환;손정락;노승탁;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.354-360
    • /
    • 2001
  • Hybrid energy system of fuel cell and gas turbine is discussed as the system to be used in the distributed power generation. Discussion is first directed to the distributed power generation system which is expected to be more popularly introduced both in urban and isolated areas. In the next some characteristic features of fuel cell and micro gas turbine are shortly described. In the last discussion is turn to the fuel cell and micro gas turbine hybrid system. In particular, performance characteristics of a representative SOFC/MGT hybrid system are investigated through the concept design at various power capacity levels.

  • PDF

마이크로 가스터빈 엔진 개발 (Development of the Micro Gas Turbine Engine)

  • 김승우;권기훈;장일형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.361-366
    • /
    • 2001
  • A mim turbo-shaft engine of 50HP for UAV, which can be easily modified to turbo-prop and turbo-jet engine by sharing the core engine and has many applications to civilian demands and munitions, will be developed This kind of micro gas turbine engine has been developed mostly by the corporations which have special technology but are small in its scale. Especially, the gas turbine engine can be easily applied to other fields and developed by domestic technology, so that the sharing of technology is planed to realize through the cooperations with academies and research institutes. In this paper, the gas turbine engine, which has the compressor ratio of 3.8, the turbine inlet temperature of l180K and the engine speed higher than 100,000 rpm, is composed of centrifugal compressor, combustor, gas generator turbine, free power turbine and gear box. The competitiveness of the gas turbine engine can be obtained from minimizing its cost by the utilization of domestic infrastructure for the performance test and the decisive outsourcing.

  • PDF

초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구 (Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구 (Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator)

  • 곽현덕;이용복;김창호;장건희
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF

마이크로 가스터빈 설계 및 운전 성능 분석 : 제2부 - 압축기와 터빈 성능저하에 의한 엔진 운전 및 성능변화 (Analysis of Design and Operation Performance of Micro Gas Turbine : Part 2 - Variations in Engine's Operation and Performance Caused by Performance Degradation of Compressor and Turbine)

  • 김정호;김민재;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.30-35
    • /
    • 2015
  • This study analyzed the variations in the performance and operation of a 200 kW class micro gas turbine according to performance degradation of compressor and turbine. An in-house code, developed by the present authors and presented in the first part of these series of papers, were used for the analysis. The degradation of compressor and turbine were simulated by modifications in the their performance maps: mass flow rate, pressure ratio and efficiency were decreased from the reference values. Firstly, the variations in the operating conditions (air flow rate, pressure ratio) were predicted for the full load condition. Then, the same analysis were performed for a wide partial load operating range. The change in engine's performance (power output and efficiency) due to the component degradation was predicted. In addition, the change in the compressor surge margin, which is an important indicator for safe engine operation, was evaluated.

마이크로 용적형 수차의 측면누설손실이 성능에 미치는 영향 (Influence of Side Leakage Loss on the Performance of a Micro Positive Displacement Hydraulic Turbine)

  • 최영도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.291-295
    • /
    • 2006
  • Recently, greenhouse effect by $CO_2$ gas emitted by use of fossil fuel causes earth environmental problem. As a countermeasure of the global warming. micro hydropower under 100kW becomes the focus of attention for its clean and renewable energy sources. Newly developed micro positive displacement hydraulic turbine shows high efficiency and good applicability for the micro hydropoewer. The purpose of this study is to clarify the influence of leakage loss and effective head on the performance of the positive displacement hydraulic turbine for the further improvement of the turbine performance. The results show that the turbine. with a smaller side clearance. has much higher efficiency than that with bigger side clearance and it can sustain the high efficiency under the wider range of operation conditions. The turbine torque is proportional to the effective head and independent of the flow rate. The leakage is also dependent on the effective head but nearly independent of the flow rate.

마이크로 가스터빈 발전시스템의 운전성능 분석 (Analysis of Operation Performance of a Micro Gas Turbine Generator System)

  • 이종준;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제8권5호
    • /
    • pp.13-21
    • /
    • 2005
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured. Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. A method to estimate characteristic parameters such as component efficiencies, based on the comparison between measured and predicted performance data, is suggested and exemplified for the full load condition.

마이크로 가스터빈 발전시스템의 운전성능 분석 (Analysis of Operation Performance of a Micro Gas Turbine Generator System)

  • 이종준;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.132-139
    • /
    • 2004
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. On the basis of the measured data, analytical approach is tried to estimate design characteristic and performance parameters such as component efficiencies and unmeasured temperatures.

  • PDF

마이크로 가스터빈의 탈설계 운전 성능특성 (Performance Characteristics for Off-design Operation of Micro Gas Turbines)

  • 김동섭;황성훈
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.