• Title/Summary/Keyword: Micro-Power

Search Result 1,671, Processing Time 0.025 seconds

Performance Prediction & Analysis of MGT Co-generation System

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.15-22
    • /
    • 2006
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new market penetration using the distributed generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection standards. KEPCO, a government company in Korea, has performed the project to identify and evaluate the performance of Micro Gas Turbine(MGT) technologies focused on 30, 60kW-class grid-connected optimization and combined Heat & Power performance. This paper describes the results for the mechanical, electrical, and environmental tests of MGT on actual grid-connection under Korean regulations. As one of the achievements, the simulation model of Exhaust-gas Absorption Chiller was developed, so that it will be able to analyze or propose new distributed generation system using MGT. In addition, KEPCO carried out the field testing of the MGT Cogeneration system at the R&D Center Building, KEPCO. The field test was conducted in order to respond to a wide variety of needs for heat recovery and utilization. The suggested method and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

Study on the Performance Optimization of Commercial Metal Hydride Refrigerator Powered by Exhaust Gas from Micro Gas Turbine (마이크로가스터빈의 부하에 따른 상용 수소흡장냉동기의 성능 최적화에 관한 연구)

  • Kim Hyoungsik;Sohn Wha-seung;Choi Kyoung-shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.824-829
    • /
    • 2005
  • MHR(Metal Hydride Refrigerator) powered by MGT exhaust gas is investigated to find out the optimum conditions corresponding to MGT operating powers. There are many factors to affect cooling capacity of MHR. In this study, the effect of switching time, flow rate of brine on cooling temperature and capacity is investigated. The present results show (1) hydrogen reaction is saturated with 25 min switching time at 25 kW MGT power, (2) cooling power shows maximum phenomenon with increasing switching time, (3) optimum switching times are 20 minutes for 15kW MGT power and 15 minutes for 20, 25kW MGT power, (4) according to increasing brine flow rate, cooling capacity shows decrease at 15 kW MGT power and changes little at above 20 kW MGT power.

Failure Analysis of Circulating Water Pump Shaft in Power Plant (발전 계획에서 순환 물 펌프 고장 분석)

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.125-128
    • /
    • 2021
  • This paper presents the root cause failure analysis of the circulating water pump in the 560 MW thermal power plant. A fractured austenitic stainless-steel shaft operated for 24 years was examined. Fracture morphology was investigated by micro and macro-fractographic analysis. The metallurgical analyses including chemical analysis, metallography and hardness testing were performed. The analysis reveals that the pump shaft was fractured due to the reverse bending load with combination of rotating bending load. Corrective actions for plant operator was recommended based on the analysis.

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Catalyst Preparations, Coating Methods, and Supports for Micro Combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Lee, Sung-Ho;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

Device Characteristic and Voltage-Type Inverter Simulation by Power IGBT Micro Modeling (전력용 IGBT의 미시적인 모델링에 의한 소자특성 및 전압형 인버터 시뮬레이션)

  • 서영수;백동현;조문택;이상훈;허종명
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.63-66
    • /
    • 1996
  • An micro model for the power insulated Gate Bipolar Transistor(IGBT) is developed. The model consistently described the IGBT steady-state current-voltage characteristics and switching transient current and voltage waveform for all loading conditions. The model is based on the equivalent circuit of a MOSFET with supplies the base current to a low-gain, high-level injection, bipolar transistor with its base virtual contact at the collector and of the base. Model results are compared with measured turn-on and turn-off waveform for different drive, load, and feedback circuits.

  • PDF

Electrical Performance Characteristics of 200W PEM-Type Fuel Cells with Variations on Mass Flow Rate and Stack Temperature (공급유량 및 스택온도의 변이에 따른 200W급 PEM형 연료전지의 전기적 성능특성)

  • Hong, Kyung-Jin;Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.563-567
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are 1~8L/min on $H_2$ volume and $20{\sim}70^{\circ}C$ on stack temperature.

Analysis of Operation Performance of a Micro Gas Turbine Generator System (마이크로 가스터빈 발전시스템의 운전성능 분석)

  • Lee, J. J.;Kim, T. S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.13-21
    • /
    • 2005
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured. Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. A method to estimate characteristic parameters such as component efficiencies, based on the comparison between measured and predicted performance data, is suggested and exemplified for the full load condition.

Performance Test of MGT Combined Heat & Power System (마이크로 가스터빈 열병합 발전시스템 성능평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.313-316
    • /
    • 2006
  • As Decentralized Generation(DG) becomes more reliable and economically feasible, it is expected that a higher application of DG units would be interconnected to the existing grids. This new market penetration of DG technologies is linked to a large number of factors like technologies costs and performances, interconnection issues, safety, market regulations, environmental issues or grid connection constrains. Korea Electric Power Corporation (KEPCO) has researched performance characteristics of the 60k W class 1) basic start-up & shutdown operation analysis 2) interconnection test 3) MGT -absorption chiller-heater system in the local condition. Variations of heat recovery from exhaust gas has measured according to micro gas turbine output of 15, 30, 45, 60kW. From those results, the performance of the MGT-absorption chiller/heater system has been evaluated. The suggested strategy and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF