• 제목/요약/키워드: Micro-Physical Environment

검색결과 65건 처리시간 0.023초

마이크로머쉰의 자동 시뮬레이션 시스템 (Automated Simulation System for Micromachines)

  • 이준성
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.29-29
    • /
    • 1996
  • This paper describes a new automated simulation system for micromachines whose size range $10^{-6}$ to $10^{-3}$ m. An automic finite element (FE) mesh generation technique, which is bases on the fuzzy knowledge processing and computation al geometry technique, is incorporated into the system, together with one of commerical FE analysis codes, MARC, and one of commerical solid modelers, Designbase. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of micromachines to be analyzed, i,e. electrostatic analysis, stress analysis, modal analysis and so on. The FE models are then automatically analyzed using the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns and the assignment of material properties and boundary conditions onto the geometry model are only the interactive process to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a popular engineering workstation environment. This automated simulation system is successfully applied to evaluate an electrostatic micro wobble actuator.

마이크로머쉰의 자동 시뮬레이션시스템 (Automated Simulation System for Micromachines)

  • 이준성
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.28-42
    • /
    • 1996
  • This paper describes a new automated simulation system for micromachines whose size range $10^{-6}$ to $10^{-3}$ m. An automic finite element (FE) mesh generation technique, which is bases on the fuzzy knowledge processing and computation al geometry technique, is incorporated into the system, together with one of commerical FE analysis codes, MARC ,and one of commerical solid modelers, Designbase. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of micromachines to be analyzed , i,e. electrostatic analysis, stress analysis, modal analysis and so on. The FEmodels are then automatically analyzed using the FE analysis code, Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns and the assignment of material properties and boundary conditions onto the geometry model are only the interactive process to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a popular engineering workstation environment. This automated simulation system is successfully applied to evaluate an electrostatic micro wobble actuator.

  • PDF

지르코늄 합금의 대량수소화에 미치는 표면산화막의 영향 (Effects of Surface Oxide Film on Massive Hydriding of Zr Alloy)

  • 김선기;방제건;김대호;임익성;양용식;송근우;김용수
    • 한국재료학회지
    • /
    • 제18권11호
    • /
    • pp.597-603
    • /
    • 2008
  • Oxide effects experiments on massive hydriding reactions of Zr alloy with hydrogen gas were carried out at $400^{\circ}C$ under 1 atm in a $H_2$ environment with a thermo-gravimetric apparatus (TGA). Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness. The results also show that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and that the hydriding rates are similar to that of oxide-free Zr alloys once massive hydriding is initiated. Unlikely microstructure of the oxide during incubation time, physical defects such as micro-cracks and pores were observed in the oxide after incubation time. Therefore, it seems that the massive hydriding of Zr alloys can be ascribed to short circuit paths and mechanical or physical defects, such as micro-cracks and pores in the oxide, rather than to hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypo-stoichiometric oxide.

천연섬유질을 심재로 사용한 친환경 복합단열재의 물성 (Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material)

  • 황의환;조성준;김진만
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.120-127
    • /
    • 2011
  • 친환경 복합단열재를 개발하기 위하여 천연섬유질(목재칩 및 톱밥)을 심재로, 활성황토를 결합재로 사용하였다. 물/결합재비 및 천연섬유질/결합재비를 다양하게 변화시켜 공시체를 제작하였으며, 공시체의 제 물성을 조사하기 위하여 압축 및 휨강도, 흡수성, 내열수성, 열전도도, 세공분포측정 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 흡수율은 천연섬유질/결합재비가 증가될수록 증가되었으나 폴리머/결합재비 증가에 따라 현저히 감소되었다. 압축 및 휨강도는 물/결합재비 및 천연섬유질/결합재비에 따라 다양한 특성을 나타내었다. 천연섬유질/결합재비 및 폴리머/결합재비가 증가됨에 따라 열전도도는 감소되었다. SEM조사에서 활성황토 결합재는 수화결정체가 잘 형성되어 치밀한 조직을 관찰할 수 있었고, 활성황토를 결합재로 사용한 시편의 총세공량은 생황토를 결합재로 사용한 시편의 총세공량에 비하여 적게 나타났다.

Design and Evaluation of the Internet-Of-Small-Things Prototype Powered by a Solar Panel Integrated with a Supercapacitor

  • Park, Sangsoo
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.11-19
    • /
    • 2021
  • 본 논문은 충전식 배터리의 단점을 보완하여 급속 충전과 방전이 가능하고 높은 전력 효율 및 반영구적인 충·방전 사이클 수명의 특성을 갖는 수퍼커패시터를 보조 전력 저장장치로 사용하여 전력 관리 시스템에 결합한 프로토타입 플랫폼을 제안한다. 본 논문의 플랫폼을 위해 물리적인 환경 변화에 따른 태양광 패널에서의 공급 전력 차단 혹은 재개 상태를 마이크로컨트롤러에 연결된 인터럽트를 통해 감지할 수 있는 기법을 개발하였다. 연속적인 전원 공급이 보장되지 않는 컴퓨팅 환경에서 데이터의 유실을 방지하기 위해 전원 공급이 차단되는 경우 휘발성 메모리에 있는 프로그램 문맥 및 데이터를 비휘발성 메모리로 이전하는 낮은 수준의 시스템 소프트웨어를 마이크로컨트롤러에 구현하였다. 실험을 통해 슈퍼커패시터가 보조 전력 저장장치로서 일시적 전원 공급에 효과적으로 하는지를 검증하였으며 다양한 벤치마크를 통해 전원 상태 감지 및 휘발성 메모리에서 비휘발성 메모리로의 프로그램 문맥 및 데이터의 이전 기법이 낮은 오버헤드를 갖음을 확인하였다.

LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성 (Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD)

  • 정귀상;김강산
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

외곽 침입 감지를 위한 스마트 디바이스의 개발 (Development of Smart Device Module for Perimeter Intrusion Detection)

  • 류대현;최태완
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.363-370
    • /
    • 2021
  • 외곽 침입감지 시스템은 물리 보안에 있어서 중요한 비중을 차지하고 있다. 본 연구에서는 외곽 침입감지를 위해 IoT 환경에서 적용할 수 있는 MEMS 센서를 활용한 초소형 스마트 디바이스를 개발하고 그 성능을 평가하였다. 본 연구에서 개발한 스마트 디바이스를 적용한 외곽 침입감지 시스템은 다양한 재질, 형태의 철조망이 도심, 바닷가, 산속 등 다양한 설치환경에 설치되어 외부의 침입과 그 위치를 감지할 수 있을 뿐 아니라, 오경보율과 구축비용 등을 최소화할 수 있는 스마트 센서로 국가 및 민간 주요 시설의 외각 침입 감지 위해 활용될 수 있을 것으로 기대한다.

Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향 (Influence of the Duty Cycle on the Characteristics of Al2O3 Coatings Formed on the Al-1050 by Plasma Electrolytic Oxidation)

  • 남경수;문정인;피마봉 껑씨;송정환;임대영
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.108-115
    • /
    • 2013
  • Oxide coatings were prepared on Al-1050 substrates by an environment-friendly plasma electrolytic oxidation (PEO) process using an electrolytic solution of $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The effects of three different duty cycles (20%, 40%, and 60%) and frequencies (50 Hz, 200 Hz, and 800 Hz) on the structure and micro-hardness of the oxide coatings were investigated. XRD analysis revealed that the oxides were mainly composed of ${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, and mullite. The proportion of each crystalline phase depended on various electrical parameters, such as duty cycle and frequency. SEM images indicated that the oxide coatings formed at a 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles. However, the oxides prepared at a 20% duty cycle showed relatively smooth surfaces. The PEO treatment also resulted in a strong adhesion between the oxide coating and the substrate. The oxide coatings were found to improve the micro-hardness with the increase of duty cycle. The structural and physical properties of the oxide coatings were affected by the duty cycles.

Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition

  • Ye, Hailong;Fu, Chuanqing;Jin, Nanguo;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.183-198
    • /
    • 2015
  • Chloride ingress implies a complex interaction between physical and chemical process, in which heat, moisture and chloride ions transport through concrete cover. Meanwhile, reinforced concrete structure itself undergoes evolution due to variation in temperature, relative humidity and creep effects, which can potentially change the deformation and trigger some micro-cracks in concrete. In addition, all of these process show time-dependent performance with complex interaction between structures and environments. In the present work, a time-dependent behavior of chloride transport in reinforced concrete beam subjected to flexural load is proposed based on the well-known section fiber model. The strain state varies because of stress redistribution caused by the interaction between environment and structure, mainly dominated by thermal stresses and shrinkage stress and creep. Finally, in order to clear the influence of strain state on the chloride diffusivity, experiment test were carried out and a power function used to describe this influence is proposed.

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • 제21권5호
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.