• Title/Summary/Keyword: Micro-Motion

Search Result 456, Processing Time 0.024 seconds

Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석)

  • Park, Jae-Hak;Jung, Jong-Chul;Huh, Kun-Soo;Chung, Chung-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

A Magnetorheological Polishing System (자기유변유체를 이용한 연마가공 시스템)

  • 김영민;신영재;이응숙;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.324-328
    • /
    • 2003
  • The Magnetoeheological fluid has the properties that it's viscosity has dramastic changed under some magnetic fields therefore, Magnetorhlogical fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorhological finshing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fulid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate f3r glass polishing lends support the validity of the approach.

  • PDF

Dynamic Characteristics of Vertically Coupled Structures: Application to Micro Gyroscopes (수직방향으로 연성된 구조물의 진동 특성: 마이크로 자이로센서에 응용)

  • Kim, Taek-Hyun;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1918-1924
    • /
    • 2000
  • Dynamic characteristics of a vertically coupled structure used for micro gyroscopes, is studied. The coupled motion between the reference and sensing vibrations causes the zero-point output which means non-zero sensing vibration without angular velocity. This structural coupling deteriorates sensing performance and dynamic stability. We theoretically analyze dynamic characteristics associated the coupling phenomenon. Effects of reference frequency and coupling factor on the rotational direction and amplitude of elliptic oscillation are studied. A method to predict the existence of curve veering or crossing in frequency trajectories is introduced for the application to the design of micro gyroscopes with a vertically decoupled structure.

  • PDF

Digital Tomosynthesis using a Flat-panel Detector based Micro-CT

  • Mandai, Koushik Kanti;Choi, Jeong-Min;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.364-370
    • /
    • 2008
  • Recent development in large area flat-panel x-ray detector technology enables clinical application of digital tomosyntesis. Unlike conventional motion tomography using x-ray films, flat-panel x-ray detectors provide projection images in digital formats so that tomographic images can be synthesized in a more flexible way. For the digital tomosynthesis, precise movements of the x-ray source and the x-ray detector with respect to a fulcrum point are necessary. In this study, we apply the digital tomosynthesis technique to the flat-panel detector based micro-CT in which the flat-panel detector and the x-ray source rotate together on a circular arc. The experimental results suggest that flat-panel detector based 3D CTs can be used for digital tomosynthesis in the clinical environment.

Improvement of circular cutting using voltage control of piezo-actuator in micro milling (마이크로밀링에서 피에조 구동기의 전압제어를 이용한 원주가공의 성능향상)

  • Seok J. W.;Chung B. M.;Ko T. J.;Kim H. S.;Park J. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.446-452
    • /
    • 2005
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step by step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes a voltage control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

  • PDF

Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator (병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석)

  • Kim, Eun-Seok;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.

A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts (미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Gee-Hong;Ko, Kuk-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.

Micro Step Driving of Step Motor using VHDL (VHDL을 이용한 스텝모터의 마이크로 스텝 구동)

  • 이남곤;박승엽;황정원;권현아
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.135-138
    • /
    • 2001
  • This paper presents micro step driving method using VHDL(Very high speed integrated circuit Hardware Description Language) which can configure CPLD(Complex Programmable Logic Device). Using VHDL which can do abstractive programming is similar to high level language. The whole block divided into five parts with freq. divide part, saw-tooth wave generation part, sine-cosine wave generation part, comparative part, out part. In the result of this study, peripheral circuits are to be simple and using LPM(Library of Parameterized Modules) is more easily to configure circuit. It is easy to verify and implement by using VHDL. To subdivide one natural step, we confirm that using micro step driver is expected that the rotor motion is stepless very smooth.

  • PDF

The Development of Polishing System a Magnetorheological Fluids (자기유변유체를 이용한 연마가공 시스템의 개발)

  • 신영재;김동우;이응숙;김경웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.46-52
    • /
    • 2004
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used fur micro polishing of the micro part(for example, a spherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

Improvement of circular cutting using adaptive control in micro milling with piezo-actuator (마이크로 밀링에서 적응제어를 이용한 피에조 구동기의 원주가공의 성능향상)

  • Kim T.H.;Ko T.J.;Chung B.M.;Kim H.S.;Seok J.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.543-550
    • /
    • 2005
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step by step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes an adaptive control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

  • PDF