• Title/Summary/Keyword: Micro-Injection Molding

Search Result 179, Processing Time 0.03 seconds

The development of LIGA & MEMS precess for fabricating micro CPL (Micro CPL 제작을 위한 LIGA & MEMS 공정개발)

  • Cho, Jin-Woo;Jung, Suk-Won;Park, Jun-Sik;Park, Soon-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1976-1978
    • /
    • 2002
  • micro CPL 제작을 위한 LICA 및 MEMS 공정을 개발하였으며 양산화를 위한 새로운 방법으로 ${\mu}$MIM(micro Metal Injection Molding) 기술을 제안하였다. 먼저 LIGA 기술을 이용하여 Cu 도금 구조물로 이루어진 micro CPL 구조물을 제작하였다. 각각 상판과 하판 구조물로 나누어 제작하였으며 상, 하판 Cu 구조물을 brazing 방법을 이용하여 접합하였다. 또한 micro CPL 내부에서 일어나는 냉매의 흐름 및 상변화(liquid ${\leftrightarrow}$ vapor) 거동을 관찰할 수 있는 새로운 개념의 Si/glass 투명 micro CPL을 제작하였다. 상기 공정을 이용하여 냉각 능력이 10w/$cm^2$ 이상인 micro CPL을 제작하였다. 상기 연구 결과를 바탕으로 양산화를 위한 새로운 정밀복제기술인 ${\mu}$MIM(Micro Metal Injection Molding) 공정을 개발하였다. LISA 공정으로 제작된 정밀 금형을 core금형으로 사용하였고 $1{\mu}m$ 이하의 W-Cu(10%) powder와 binder가 혼합된 흔합분말을 이용하여 micro channel 구조물(선폭 $100{\mu}m$)의 성형 복제에 성공함으로서 양산화를 향한 기반기술을 확립하였다.

  • PDF

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.

Local Heating of an Injection Mold using Selective Induction Heating (선택적 유도가열을 사용한 사출금형의 국부가열기술)

  • Do, Bum-Suk;Park, Jung-Min;Eom, Hye-Ju;Park, Keun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1119-1123
    • /
    • 2008
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a noncontact procedure. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has difficulty in efficient mold temperature control due to the restriction of an induction coil design suitable for the given mold shape. The present study proposed a localized mold heating method by means of selective use of mold material. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The feasibility of the proposed heating method is investigated through an experimental measurement in terms of the heating efficiency on the localized mold surface.

  • PDF

Comparative Analysis of Injection Molding Process by On-line Monitoring in Cylinder of Injection Molding Machine and in Cavity of Mold (사출성형기 실린더와 금형 캐비티의 실시간 모니터링을 이용한 사출성형공정 비교 분석)

  • Park, Hyung-Pi;Cha, Baeg-Soon;Tae, Jun-Sung;Choi, Jae-Hyuk;Rhee, Byung-Ohk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1513-1519
    • /
    • 2010
  • Recently, on-line process monitoring systems using sensors are being extensively used to produce highquality products. However, the difficulty in installing the sensors within the mold in the cases of micro-molds, optical molds, and molds with complex structures is a serious disadvantage of such process monitoring systems. In this study, the quantitative index of a process monitoring system was evaluated with the mold cavity pressure and the nozzle pressure for the injection molding machine. In order to evaluate the effect of the nozzle pressure, we performed correlation analysis for the weight of the molded product. We also examined the control characteristics of the injection molding machine by analyzing the effect of multistage injection speed, holding pressure, and injection pressure limit on the process monitoring data.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern (마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구)

  • Park, Chi Yoel;Seo, Chan-Yoel;Kim, Yongdae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

Silicone Injection Mold & Molding Technology for Super-hydrophobic Curved Surface (초발수 곡면표면 실리콘 사출금형성형기술)

  • Lee, Sung-Hee;Kang, Jeong-Jin;Lee, Jong-Won;Hong, Seok-Kwan;Ko, Jong-Soo;Lee, Jae-Hoon;Noh, Ji-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • In this study, silicone injection molding technology with curved thermoplastic insert was developed to produce super-hydrophobic surface. Thermoplastic insert part and injection mold design of base plastic cover were performed to produce cost effective hydrophobic surface part. An optimization process of part thickness for thermoplastic insert part was performed with transient thermal analysis under silicone over-molding process condition. Structural thermal analysis of silicone injection mold was also performed to obtain uniform temperature condition on the surface of micro-patterned mold core. Super-hydrophobic surface for the silicone injection molded part with thermoplastic insert could be verified from the measurement of contact angle. It was shown that the averaged contact angle was over $140^{\circ}$.

Applications of Micro Genetic Algorithms to Engineering Design Optimization (마이크로 유전알고리듬의 최적설계 응용에 관한 연구)

  • Kim, Jong-Hun;Lee, Jong-Soo;Lee, Hyung-Joo;Koo, Bon-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.158-166
    • /
    • 2003
  • The paper describes the development and application of advanced evolutionary computing techniques referred to as micro genetic algorithms ($\mu$GA) in the context of engineering design optimization. The basic concept behind $\mu$GA draws from the use of small size of population irrespective of the bit string length in the representation of design variable. Such strategies also demonstrate the faster convergence capability and more savings in computational resource requirements than simple genetic algorithms (SGA). The paper first explores ten-bar truss design problems to see the optimization performance between $\mu$GA and SGA. Subsequently, $\mu$GA is applied to a realistic engineering design problem in the injection molding process optimization.