• Title/Summary/Keyword: Micro nozzle

Search Result 209, Processing Time 0.028 seconds

Study of Micro-Supersonic Impinging Jets and Its Application to the Laser Machining (마이크로 초음속제트의 충돌유동과 레이저 가공 응용에 관한 연구)

  • Min, Seong-Kyu;Yu, Dong-Ok;Lee, Yeol;Cheong, Jo-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • Characteristics of micro-sonic/supersonic axi-symmetric jet impinging on a flat plate with a pre-drilled hole were both experimentally and numerically studied, to observe the role of assist-gas jet to eject melted materials from the cut zone in the laser machining. For various Mach numbers of the nozzle and the total pressures of the assist gas, detailed impinging jet flow structures over the plate and the variations of mass flux through the pre-drilled hole were observed. It was found that the present experimental and numerical results show a good agreement, which proves the accountability of the present work. From the present study, it was also observed that the mass flow rate through the hole was closely related with the total pressure loss caused by the Mach disc on the work piece, and that supersonic nozzle could perform more efficient roles as blowing the assist-gas jet in the laser machining, as compared to sonic nozzles.

Development of Engine Piston Ring Surface for Friction Reduction using Micro Abrasive Air Jet (Micro-AAJ를 이용한 엔진 피스톤 링의 마찰 저감 표면 개발)

  • Choi, Soochang;Ro, Seung-Kook;Lee, Hyun-Hwa;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.389-394
    • /
    • 2014
  • In this paper, we report a new manufacturing method for friction reduction using micro-AAJ (abrasive air-jet) machining. AAJ machining employs compressed air to accelerate a jet of high-speed particles to mechanically machine features, including micro-channels and micro-holes, into glass, metal, or polymer substrates for use in microfluidics, MEMS (micro electromechanical systems). And we introduce the micro-AAJ machining system, which consists of a micro-AAJ nozzle and a five-axis positioning system. Various micro-AAJ nozzles can be used, depending on the required surface structure, and three-dimensional machining is possible. We machined samples under six different conditions and describe machining results obtained while using it. We also measured the coefficient of friction of micro-textured surfaces. We report the coefficient of friction of micro-textured surfaces patterned using micro-AAJ machining for engine piston ring.

Operation of PCR chip by micropump (마이크로펌프를 이용한 PCR Chip의 구동)

  • 최종필;반준호;장인배;김헌영;김병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.463-467
    • /
    • 2004
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated b micro-heater under pulse heating. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, he middle plate, the upper plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The middle plate includes the chamber and diaphragm d the upper plate is the micro-heater. The Micropump is fabricated by bonding process of the three layer. This paper resented the possibility of the PCR chip operation by the fabricated micropump.

  • PDF

Performance Prediction and Analysis of a MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 성능예측 및 분석)

  • Jung, Juyeong;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The performance of a MEMS solid propellant thruster was predicted and analyzed through internal ballistics model and CFD analysis. The nozzle throat was $416{\mu}m$, and the area ratio of the nozzle was 1.85. As a result of the internal ballistics model, chamber pressure increased up to 197 bar and the maximum thrust was 3,836 mN. In CFD analysis, the chamber pressure of the internal ballistics model was applied as the operating pressure, and the CFD model was divided into an adiabatic and a heat loss model. As a result, the maximum thrust of the adiabatic model was 14.92% lower than that of the internal ballistics model, and the effect of heat loss was insignificant.

Comparative Study on Ejection Phenomena of Droplets from EHD Jet by Hydrophobic Coating of Nozzle (노즐의 소수성 코팅에 의한 EHD 제트의 액적 토출 현상 비교 연구)

  • Kim, Yong-Jae;Choi, Jae-Yong;Son, Sang-Uk;Ahn, Ki-Cheol;Keum, Hyun-Joon;Lee, Suk-Han;Byun, Do-Young;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1742-1746
    • /
    • 2008
  • An EHD (Electro-Hydro-Dynamic) jet for electrostatic inkjet head shows advantages to print micro-size patterns using various inks because it can generate sub-micron droplets and can use highly viscous inks. Thus, many researchers in industrial fields are concerned about the EHD jet in these days. Since the basic principle of the EHD jet is to form a droplet from an apex of meniscus at the end of the nozzle, the ejection mechanism can be changed by the shape of the meniscus. The stable ejection of the droplet is greatly affected by the shape of the meniscus which is also influenced by surface characteristics of the nozzle, electric potential and ink properties. Experiments have been performed using the nozzles with hydrophilic and hydrophobic coatings in this study. The hydrophobic nozzle forms the stable droplets in wider range of the electric potential than the hydrophilic nozzle does.

  • PDF

Rapid Prototyping and Testing of 3D Micro Rockets Using Mechanical Micro Machining

  • Chu Won-Shik;Beak Chang-Il;Ahn Sung-Hoon;Cho Tae-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.85-93
    • /
    • 2006
  • The trend of miniaturization has been applied to the research of rockets to develop prototypes of micro rockets. In this paper, the development of a web-integrated prototyping system for three-dimensional micro rockets, and the results of combustion tests are discussed. The body of rocket was made of 6061 aluminum cylinder by lathe process. The three-dimensional micro nozzles were fabricated on the same aluminum by using micro endmills with ${\phi}100{\mu}m{sim}{\phi}500{\mu}m$ diameter. Two types of micro nozzle were fabricated and compared for performance. The total mass of the rockets was 7.32 g and that of propellant (gun powder) was 0.65 g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle from the ground resulted in $46\;m{\sim}53\;m$ of horizontal flight distance. In addition, ABS housing for the micro machined rocket was fabricated using Fused Deposition Modeling (FDM). A web-based design, fabrication, and test system for micro nozzles was proposed to integrate the distributed hardware resources. Test data was sent to the designer via the same web server for the faster feedback to the rocket designer.

A Study for Micro-patterning using an Electrostatic Inkjet (정전기력 잉크젯 프린팅을 이용한 마이크로 패터닝에 관한 연구)

  • Kim, Jun-Woo;Choi, Kyoung-Hyun;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1103-1106
    • /
    • 2008
  • For the current display process, the innovative micro pattern fabrication process using semiconductor process should be developed, which requires the expensive equipment, the limited process environment and the expensive optic-sensitive material. The effort of process innovation during past several years ends up the limit of cost reduction. The existing ink jet technologies such as a thermal bubble ink jet printing and a piezo ink jet printing are required to shorten the nozzle diameter in order to apply to the micro pattern fabrication. In this paper, as one way to cope these problems the micro pattern equipment based on the electrostatic ink jet has been developed and carried out some experiments.

  • PDF

MICRO INJECTOR BASED ON DIGITAL DRIVE AND CONTROL FOR BIOMEDICAL ENGINEERING

  • Hou, Liya;Zhang, Weiyi;Mu, Lili;Zhu, Li
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2349-2351
    • /
    • 2003
  • This paper reports a novel microfluidic system, by which microfluidic delivery, transport and control can be digitally realized in femtoliter scale. Microelectronic grade $N_2$ from a pressurized canister was passed through HPLC tubing into a micro injector. The micro injector was driven and controlled digitally by the control system that can apply various control parameters such as pulse frequencies. A front-end of micro nozzle was inserted the dyed oil to collect droplets injected. The diameter of a droplet was measured by a microscope and a CCD camera, and then its volume can be calculated on the assumption that the droplet is spherical. The micro nozzles were simply pulled in glass capillary tubes by the micro puller self-made, and the geometry parameters of the micro nozzles can be adjusted easily. Experiments have successfully been carried out, and the results demonstrated that the proposed digital micro injector possesses three significant advantages : precise ultra-small liquid volume in femtoliter scale, digital microfluidic control and micro devices fabricated by simple glass process, not based on IC process.

  • PDF

Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites (블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성)

  • Jeong, Hyeon-A;Lee, Chang Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.149-156
    • /
    • 2017
  • Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

Study on Micro-bubble Generation Characteristics in Venturi Cavitation using Laser Diffractometer (레이저 회절 측정기를 이용한 벤츄리 캐비테이션에서의 마이크로버블 발생 특성 연구)

  • Lim, Yun Gyu;Yang, Hae Jeong;Kim, Yung Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The use of micro bubbles in industrial fields has been increasing in the recent years., particularly micro-bubble sterilization and water purification effects. Various methods have been developed for the generation of micro-bubbles. Depending on the method of generating bubbles, the micro-bubbles can be roughly classified into saturation molding, cavitation and rotation flow types. The objective of this study was to use ventilated tube type as a method of generating micro-bubbles in order to purify large amount of water quality such as lakes and reservoirs. This method shows a difference in efficiency in which micro-bubbles are generated depending on the contact ratio of gas to liquid. The study also investigated the optimal gas liquid contact ratio by applying various orifice methods and investigated the optimum condition of micro-bubble generation by gas Based on this, a technology to develop a micro-bubble generator with a venturi type nozzle shape that has a high water purification effect was developed.