DOI QR코드

DOI QR Code

Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites

블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성

  • Jeong, Hyeon-A (Graduate School of Convergence Science, Pusan National University) ;
  • Lee, Chang Hoon (Industrial Liaison Innovation Center, Pusan National University) ;
  • Kang, Myung Chang (Graduate School of Convergence Science, Pusan National University)
  • 정현아 (부산대학교 융합학부) ;
  • 이창훈 (부산대학교 부품소재산학협력연구소) ;
  • 강명창 (부산대학교 융합학부)
  • Received : 2016.12.07
  • Accepted : 2017.02.13
  • Published : 2017.02.28

Abstract

Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

Keywords

References

  1. Fan, Y., Wang, L., Li, J., Li, J. and Sun, S., "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, Vol. 48, No. 6, pp. 1743-1749, 2010. https://doi.org/10.1016/j.carbon.2010.01.017
  2. Xia, H., Zhang, X., Shi, Z., Zhao, C., Li, Y., Wang, J. and Qiao, G., "Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites," MAT SCI ENG A-STRUCT, Vol. 639, pp. 29-36, 2015. https://doi.org/10.1016/j.msea.2015.04.091
  3. Ramirez, C., Figueiredo, F. M., Miranzo, P., Poza, P. and Osendi, M. I., "Graphene Nanoplatelet/Silicon Nitride Composites with High Electrical Conductivity," Carbon, Vol. 50, No. 10, pp. 3607-3615, 2012. https://doi.org/10.1016/j.carbon.2012.03.031
  4. Porwal, H., Grasso, S. and Reece, M. J., "Review of graphene ceramic matrix composite," Adv. Appl. Ceram., Vol. 112, No. 8, pp. 443-454, 2013. https://doi.org/10.1179/174367613X13764308970581
  5. Pawel, R., Piotr, K., Lucyna, J. and Ludoslaw, S. Aleksandra, D., "Thermal properties of pressure sintered alumina-graphene composites," J. Therm Anal Calorim, Vol. 122, No. 1, pp. 105-114, 2015. https://doi.org/10.1007/s10973-015-4694-x
  6. Liu, J., Yan, M. and Jiang, K., "Mechanical properties of graphene platelet-reinforced alumina ceramic composites," Ceram. Int., Vol. 39, pp. 6215-6221, 2013. https://doi.org/10.1016/j.ceramint.2013.01.041
  7. Celika, Y., Celika, A., Flahautb, E. and Suvacia, E., "Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites," J EUR CERAM SOC, Vol. 36, No. 8, pp. 2075-2086, 2016. https://doi.org/10.1016/j.jeurceramsoc.2016.02.032
  8. Sung, J. W., Kim, N. K. and Kang, M. C., "Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining," J. of KSMPE, Vol. 12, No. 3, pp. 3-9, 2013. https://doi.org/10.14775/ksmpe.2013.12.6.003
  9. Govindaraajan B., Yadhukulakrishnan., Sriharsha Karumuri., Arif Rahman., ,Raman P., Singh, A., Kaan Kalkan., Sandip P. Harimkar., "Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites," CERAM INT, Vol. 39, pp. 6637-6646, 2013. https://doi.org/10.1016/j.ceramint.2013.01.101
  10. Sung, J. W., Kim, K. H. and Kang, M. C., "Effects of Graphene nanoplatelet contents on material and machining properties of GNP-dispersed $Al_2O_3$ ceramics for micro-electric discharge machining," INT J PRECIS ENG MAN-GREEN TECHNOLOGY, Vol. 3, No. 3, pp. 247-252, 2016. https://doi.org/10.1007/s40684-016-0032-4
  11. Hourmand, M., Sarhan, A.A.D. and Sayuti, M., "Development of new fabrication and measurement techniques of micro-electrodes with high aspect ratio for micro EDM using typical EDM machine", Measurement, Vol. 97, pp. 64-78, 2017. https://doi.org/10.1016/j.measurement.2016.11.020
  12. Jeong, H. A., "Machining characteristics of micro electrode fabrication and aspect ratio variation for micro electrical discharge drilling of $Al_2O_3$/Graphene composite," A Thesis for a Master, Pusan National University, Republic of Korea, 2017.
  13. Kim, H. J., Lee, S. M., Oh, Y. S., Yang, Y. H., Lim, Y. H., Lim, Y. S., Yoon, D. H., Lee, C. G., Kim, J. Y., and Ruoff, R., "Unoxidized Graphene/Alumina Nanocomposite:Fracutre-and Wear-Resistance Effects of Graphene on Alumina Matrix," SCIENTIFIC REPORTS, Vol. 4, pp. 1-10, 2014.
  14. Kang, M, C., Tak, H. S., Lee, C. H. and Kim, N. K., "Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive $Al_2O_3$ composite," J. of KSMPE, Vol. 13, No. 6, pp. 119-126, 2014. https://doi.org/10.14775/ksmpe.2014.13.6.119
  15. Ryu, C. W. and Choi, S. D., "Characteristics of Surface Roughness Based on Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (I)," J. of KSMPE, Vol. 14, No. 2, pp. 59-66, 2015. https://doi.org/10.14775/ksmpe.2015.14.2.059