• Title/Summary/Keyword: Micro-Electrical Discharge Drilling

Search Result 7, Processing Time 0.022 seconds

Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites (블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성)

  • Jeong, Hyeon-A;Lee, Chang Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.149-156
    • /
    • 2017
  • Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

Machinability Evaluation of Hybrid Ti2 Ceramic Composites with Conductivity in Micro Electrical Discharge Drilling Operation (전도성을 가지는 하이브리드 Ti2AlN 세라믹 복합체의 마이크로 방전드릴링에서 가공성 평가)

  • Heo, Jae-Young;Jeong, Young-Keun;Kang, Myung-Chang;Busnaina, Ahmed
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.285-290
    • /
    • 2013
  • $Ti_2AlN$ composites are a laminated compounds that posses unique combination of typical ceramic properties and typical metallic(Ti alloy) properties. In this paper, the powder synthesis, SPS sintering, composite characteristics and machinability evaluation were systematically conducted. The random orientation characteristics and good crystallization of the $Ti_2AlN$ phase are observed. The electrical and thermal conductivity of $Ti_2AlN$ is higher than that of Ti6242 alloy. A machining test was carried out to compare the effect of material properties on micro electrical discharge drilling for $Ti_2AlN$ composite and Ti6242 alloy. Also, mixture table as a kind of tables of orthogonal arrays was used to know how parameter is main effective at experimental design. Consequently, hybrid $Ti_2AlN$ ceramic composites showed good machining time and electrode wear shape under micro ED-drilling process. This conclusion proves the feasibility in the industrial applications.

Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining (레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공)

  • Kim, San-Ha;Chung, Do-Kwan;Kim, Bo-Hyun;Oh, Kwang-Hwan;Jeong, Sung-Ho;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Estimation of Material Removal Volume of a Micro-EDM Drilled Hole Using Discharge Pulse Monitoring

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.45-49
    • /
    • 2007
  • When drilling using electrical-discharge machining (EDM), severe electrode wear makes in-process measurements of the depth of the drilled hole and the volume of material removed impossible. To estimate the volume of material removed a reliable real-time discharge pulse counting method is proposed by assuming that the volume removed in EDM is proportional to the number of discharge pulses from an iso-energy pulse generator. The geometry of machined holes, including depths and cross-sectional profiles, is estimated using geometric analysis. A proportional relationship between the volume of material removed and the number of discharge pulses was developed and verified by experiments.

A Study on the Machinability of the Micro-EDM Depending on the Materials (재료변화에 따른 Micro-EDM에서의 가공성에 관한 연구)

  • Lee, Sang-Kuk;Kim, Tae-Hyun;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.658-665
    • /
    • 2012
  • Micro-EDM is widely used in metallic pattern, electronics, nuclear power and industry in the form of precision process. The improvement of Electro Discharge Machining has been on a steady progress since $19^{th}$ century. The technology has overcome the limits of the traditional precision process, enabling micro-EDM, micro electrolytic machining, micro drilling, micro punching and laser beam machining, which create versatile products with smaller sizes. What have been known about the major feature of Micro-EDM is high thermal energy so that their products are free from the hardness of their products as long as they are electrical conductor. However, each metal is suspected to have different features and natures even if they are created through the same procedure. In this thesis, the methodology of Micro-EDM and how to categorize them are explained. Also, the nature of the examined materials with surface shape and surface roughnes are analyzed. The results of the experiments are expected to understand surface roughness and workability of other materials for Micro-EDM.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF