• 제목/요약/키워드: Micro mechanical device

검색결과 267건 처리시간 0.026초

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

박막 절단용 PZT 구동 미세깊이 조절 장치의 특성 (Characteristics of a PZT-Driven Micro Depth Adjustment Device for Cutting Coated Film)

  • 류상오;김화영;안중환
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.630-635
    • /
    • 2014
  • This study aims to develop a PZT-driven depth adjustment device with a flexure hinge and to investigate its static/dynamic characteristics. This device will be applied to rapidly and accurately trace a flat surface with slight waviness of up to several hundreds of micrometers in magnitude. One typical example is to cut a film coated on a steel plate. A depth control system composed of PMAC, PZT/PZT amplifier, flexure hinge/knife, and laser displacement sensor is implemented on a desktop three-axis machine and an actual cutting test is conducted on a steel workpiece with a sinusoidal-wavy surface. It is verified that the dynamic characteristics of the device limit the maximum cutting speed and depth precision.

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구 (Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device)

  • 임태우;양동열
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

Skin-interfaced Wearable Biosensors: A Mini-Review

  • Kim, Taehwan;Park, Inkyu
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.71-78
    • /
    • 2022
  • Wearable devices have the potential to revolutionize future medical diagnostics and personal healthcare. The integration of biosensors into scalable form factors allow continuous and noninvasive monitoring of key biomarkers and various physiological indicators. However, conventional wearable devices have critical limitations owing to their rigid and obtrusive interfaces. Recent developments in functional biocompatible materials, micro/nanofabrication methods, multimodal sensor mechanisms, and device integration technologies have provided the foundation for novel skin-interfaced bioelectronics for advanced and user-friendly wearable devices. Nonetheless, it is a great challenge to satisfy a wide range of design parameters in fabricating an authentic skin-interfaced device while maintaining its edge over conventional devices. This review highlights recent advances in skin-compatible materials, biosensor performance, and energy-harvesting methods that shed light on the future of wearable devices for digital health and personalized medicine.

전자 디스펜서용 단일 칩 제어기 설계 (Design of an One-Chip Controller for an Electronic Dispenser)

  • 김태상;원영욱;김정범
    • 전기전자학회논문지
    • /
    • 제9권2호
    • /
    • pp.101-107
    • /
    • 2005
  • 본 논문에서는 전자 디스펜서(dispenser)용 제어기를 단일 칩으로 설계하였다. 전자 디스펜서는 전자부분과 기계부분으로 구성되며, 전자부분은 이력 키패드, 제어기, 디스플레이 모듈과 펌프모듈로 구성된다. 본 논문에서 설계한 제어기는 LCD 소자와 모터 펌프를 제어하며 VHDL을 이용하여 설계하였다. LCD 소자로서 WX12864AP1을 사용하였으며, 스테핑 모터로는 SPS20을 사용하였다. 이 제어기는 Altera사의 Quartus 툴을 사용하여 설계 후, Agent 2000 설계 키트와 APEX20K 소자를 사용하여 LCD 모듈과 모터모듈에 연결하여 동작 검증함으로, 동작이 원활히 이루어짐을 확인하였다. 본 논문에서는 전자 디스펜서의 제어기 설계를 통해 전자 디스펜서의 전용 칩을 ASIC으로 구현하여 바이오기술 분야의 기기에 적용할 수 있는 가능성을 제시하였다.

  • PDF

MEMS 적용을 위한 폴리실리콘 CMP에서 디싱 감소에 대한 연구 (Dishing Reduction on Polysilicon CMP for MEMS Application)

  • 박성민;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.376-377
    • /
    • 2006
  • Chemical Mechanical Planarization (CMP) has emerged as an enabling technology for the manufacturing of multi-level metal interconnects used in high-density Integrated Circuits (IC). Recently, multi-level structures have been also widely used m the MEMS device such as micro engines, pressure sensors, micromechanical fluid pumps, micro mirrors and micro lenses. Especially, among the thin films available in IC technologies, polysilicon has probably found the widest range of uses in silicon technology based MEMS. This paper presents the characteristic of polysilicon CMP for multi-level MEMS structures. Two-step CMP process verifies that is possible to decrease dishing amount with two type of slurries characteristics. This approach is attractive because two-step CMP process can be decreased dishing amount considerably more then just one CMP process.

  • PDF

탄소나노튜브를 포함한 마이크로 액적의 정전기적 토출 (Electrostatic Ejection of Micro-droplets Containing Carbon Nanotubes)

  • 김용재;이석한;고한서;변도영;한상준;양지혜;백승현
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.82-86
    • /
    • 2006
  • Carbon nanotubes have attracted much attention as future mechanical and electronic materials. However, manipulating techniques are not well developed yet. Here we propose to use electrostatic drop-on-demand devices to eject micro-droplets containing micelle-suspended single-walled carbon nanotubes. A simple electrostatic force analysis and photographic studies of droplet ejection process are presented. The analytical analysis shows that semiconducting species have higher electrostatic force density. However, enrichment of specific electronic types is not clear at large size droplets produced in this study. A micro-scale jetting device is being produced to prove the suggested behavior.

마이크로 구조를 가진 패드를 이용한 MEMS CMP 적용에 관한 연구 (A study on the application of MEMS CMP with Micro-structure pad)

  • 박성민;정석훈;정문기;박범영;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.481-482
    • /
    • 2006
  • Chemical-mechanical polishing, the dominant technology for LSI planarization, is trending to play an important function in micro-electro mechanical systems (MEMS). However, MEMS CMP process has a couple of different characteristics in comparison to LSI device CMP since the feature size of MEMS is bigger than that of LSI devices. Preliminary CMP tests are performed to understand material removal rate (MRR) with blanket wafer under a couple of polishing pressure and velocity. Based on the blanket CMP data, this paper focuses on the consumable approach to enhance MEMS CMP by the adjustment of slurry and pad. As a mechanical tool, newly developed microstructured (MS) pad is applied to compare with conventional pad (IC 1400-k Nitta-Haas), which is fabricated by micro melding method of polyurethane. To understand the CMP characteristics in real time, in-situ friction force monitoring system was used. Finally, the topography change of poly-si MEMS structures is compared according to the pattern density, size and shape as polishing time goes on.

  • PDF