• Title/Summary/Keyword: Micro flow rate injection

Search Result 28, Processing Time 0.026 seconds

Design and Fabrication of a Microflow Rate Controller for Medical Injection (주사용 미세유량 조절기 설계와 제작)

  • Kim, Byoung-Jae;Lee, Sang-Bin;Shin, Bo-Sung;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.154-159
    • /
    • 2004
  • A new microflow rate controller for medical injection was developed and evaluated. The flow rate was controlled by changing the friction depth as well as the friction length of the micro-channel. A precise micro-fabrication of the micro-channel was requested for an accurate flow control. The friction depth was inversely proportional to the friction length, which gives a linear flow control to the channel length. The channel groove was fabricated with a plastic material. A rubber containing silicone oil was covered over the groove, which satisfies both lubrication and leakage prevention. The flow controller was validated by performing the numerical simulation and experiment. A good agreement was shown between computation and experiment.

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.

Experimental & Numerical Result of the filling of Micro Structures in Injection Molding (미세 구조물의 충전에 관한 실험 및 수치해석)

  • Lee J.G.;Lee B.K;Kwon T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

Study of Micro-channel Filling Flow Including Surface Tension Effects (표면 장력 효과를 고려한 마이크로 채널 충전과정 연구)

  • Kim, Dong-Sung;Lee, Kwang-Cheol;Kwon, Tai-Hun;Lee, Seung-S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.47-52
    • /
    • 2001
  • Micro-injection molding and microfluidic devices with the help of MEMS technologies including the LIGA process are expected to play important roles in. micro-system industries, in particular the bioapplication industry, in the near future. Understanding fluid flows in micro-channels is important since micro-channels are typical geometry in various microfluidic devices and mold inserts for micro-injection molding. In the present study, both experimental and numerical studies have been carried out to understand the detailed flow phenomena in micro-channel filling process. Three sets of micro-channels of different thickness were fabricated and a flow visualization system was also developed to observe the filling flow into the micro-channels. Experimental flow observations were extensively made to find the effects of channel width and thickness, and effects of surface tension and volume flow rate and so on. And a numerical analysis system has been developed to simulate the filling flow into micro-channels with the surface tension effect taken into account. Discussed are the flow visualization experimental observations along with the predictability of the numerical analysis system.

  • PDF

Microfluidic Method for Measurement of Blood Viscosity based on Micro PIV (Micro PIV 를 기반한 혈액 점도 측정 기법)

  • Hong, Hyeonji;Jung, Mirim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • Increase of blood viscosity significantly changes the flow resistance and wall shear stress which are related with cardiovascular diseases. For measurement of blood viscosity, microfluidic method has proposed by monitoring pressure between sample and reference flows in the downstream of a microchannel with two inlets. However, it is difficult to apply this method to unknown flow conditions. To measure blood viscosity under unknown flow conditions, a microfluidic method based on micro particle image velocimetry(PIV) is proposed in this study. Flow rate in the microchannel was estimated by assuming velocity profiles represent mean value along channel depth. To demonstrate the measurement accuracy of flow rate, the flow rates measured at the upstream and downstream of a T-shaped microchannel were compared with injection flow rate. The present results indicate that blood viscosity could be reasonably estimated according to shear rate by measuring the interfacial width and flow rate of blood flow. This method would be useful for understanding the effects of hemorheological features on the cardiovascular diseases.

Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition (증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구)

  • Cho, Wonkyu;Park, Youngsoo;Bae, Choongsik;Yu, Jun;Kim, Youngho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Hydraulic Characteristics of Deep and Low Permeable Rock Masses in Gyeongju Area by High Precision Constant Pressure Injection Test (고정밀도 정압 주입시험에 의한 경주 지역 대심도 저투수성 암반 수리특성 연구)

  • Bae, SeongHo;Kim, Hagsoo;Kim, Jangsoon;Park, Eui Seob;Jo, Yeonguk;Ji, Taegu;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.243-269
    • /
    • 2021
  • Since the early 2010s, the social importance of research and practical projects targeting deep geological disposal of high-level nuclear waste, underground CO2 storage and characterization of deep subsurface by borehole investigation has been increasing. In this regard, there is also a significant increase in the need for in situ test technology to obtain quantitative and reliable information on the hydraulic characteristics of deep rock mass. Through years of research and development, we have independently set up Deep borehole Hydraulic Test System (DHTS) based on the key apparatuses designed and made with our own technology. Using this system, high precision constant pressure injection tests were successfully completed at the two 1 km boreholes located in Mesozoic granite and sedimentary rock regions, Gyeongju. During the field tests, it was possible to measure very low flow rate below 0.01 l/min with micro flow rate injection/control module. In this paper, the major characteristics of DHTS are introduced and also some results obtained from the high precision field tests under the deep and low permeable rock mass environment are briefly discussed.

A Study of Spray Characteristics for the Slinger Injector System of Micro Turbo Jet Engine (초소형 터보제트엔진 슬링거 인젝터의 분무특성)

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-358
    • /
    • 2007
  • An experimental study was performed to understand spray characteristics of the slinger injector. system for the micro turbojet engine. In this fuel injection system, fuel is sprayed and atomized in the combustor by centrifugal forces of engine shaft. This experimental apparatus consist of a high speed rotating Spindle, slinger injector, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the droplet size(SMD) is largely affected to rotational speed, mass flow rate and the number of injection orifice. From the this experimental study, we could understand the spray characteristics of the slinger injection system and obtain the optimum shape of the slinger injector nozzle which is suitable for the micro turbojet engine.

  • PDF