• Title/Summary/Keyword: Micro channel

Search Result 612, Processing Time 0.029 seconds

The Study of the Photocatalytic Degradation for Microreactor (마이크로 반응기를 이용한 광촉매 분해특성 연구)

  • Choi B.C.;Kim H.T.
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.105-111
    • /
    • 2005
  • In this study, the photocatalytic degradtion of D-glucose with the micro channel reactor was performed on the various experimental conditions. To apply the $TiO_2$ coating on the micro channel reactor, $TiO_2$ solution was synthesized by hydrolysis of titanium oxysulfate. The feeding rate was proportional to degradation rate of D-glucose solution over the micro channel reactor. Also, the reaction rate constant and Langmuir adsorption coefficient were calculated under various experimental conditions. And the results of these system photonic efficiencies were calculated. This study aims to understand the photocatalytic degradation characteristics on $TiO_2$ coating in the micro channel reactor experimented by the feed batch reaction system.

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channel and GMR-SV Device

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Khajidmaa, Purevdorj;Bolormaa, Munkhbat;Lee, Sang-Suk
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2015.05a
    • /
    • pp.161-163
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of RBC + ${\mu}Beads$ is controlled by the electrical AC input signal. The RBC + ${\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

  • PDF

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.

A study on Manufacturing of Micro Dotting Pin (바이오용 마이크로 핀의 제작에 관한 연구)

  • Lee, Young-Soo;Km, Kwang-Soon;Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.21-27
    • /
    • 2003
  • The bio-micro pin is usually used for biochemistry analysis. The capability of manufacturing the micro-pin and array with effective and low-cost way is very important to developers. The micro-pin is composed of "sample channel" putting liquid into already fixed volume, "flat tip" having connection with printing quantity, and "head part" for preventing it from rotation of pin in the holder. We analyzed out printing variation in accordance with shape and tip size of the micro-pin point channel, In this study, we suggested the manufacturing progress and shape demand condition of the micro-pin which could put $0.2{\mu}{\ell}$-biochemistry material into the sample volume, and will be able to produce the micro-pin which can put $10n{\ell}$-biochemistry material into the sample volume in the future.

  • PDF

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.

A Study on the Refrigerant Distribution in a Parallel Flow Micro-Channel $CO_2$ Evaporator (평행류형 마이크로채널 이산화탄소 증발기에서 냉매분배에 관한 연구)

  • Jeong, Si-Young;Kim, Dae-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the distribution of $CO_2$ in an evaporator with 10 parallel micro channel aluminum tubes are experimentally investigated. Each tube has 6 circular micro channels with a diameter of 0.8mm. The tubes are heated with electric resistance wires, and the distribution of $CO_2$ into each tube is investigated by measuring the outer wall temperature. The outer wall temperature was found to be higher at the exit part of the top tube. It is thought that the $CO_2$ vapor at the upper part of the header reduces the mass flow rate of $CO_2$ into the top tube.

  • PDF

Study on mixing characteristics of T-type micro channel (미소 T 채널의 혼합 특성에 관한 연구)

  • Lee, Sang-Hyun;Ahn, Cheol-O;Seo, In-Soo;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2495-2500
    • /
    • 2008
  • We simulated the mixing characteristics in micro T-channel using Lattice Boltzmann Method. We studied the relation a mixing length and pressure-drop due to inlet and outlet ration in Reynolds number 0.5, Peclet number 500 and Schmidt 1000. The ratio of a down-inlet to up-inlet was $0.5{\sim}1.5$ times, up-inlet to outlet was $1{\sim}3$ times and outlet length was 250 times to up-inlet. The mixing length decrease linearly as outlet ratio decreased, and pressure-drip increase non-linearly. Initial stage of micro channel mixture was fast by down-inlet ratio, however, the mixing length is not influence.

  • PDF

A Study on the Machinability of Micro-Channel (마이크로 채널의 가공성에 관한 연구)

  • Hong, Min-Sung;Kim, Jong-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2008
  • Recently, the manufacturer of microscopic structures along with the development of technology to produce electronics, communication and semiconductors allows various components to be smaller in size, with higher precision. Therefore, preoccupancy of micro/nano-level machining technology in order to product micro/nano-components and parts is key issue in the field of manufacturing. In this study, machinability of micro machining was studied through the machining of aluminum, brass and steel workpiece. Inspection of the cutting force variation patterns of large numbers of micro machining indicated that characteristics of the workpiece. Surface roughness prediction methods were developed by considering the variation of the static part of the feed direction cutting force. The accuracy of the proposed approaches were tested with experimental data and the agreement between the predictions and actual observations are addressed.

Design and Fabrication of a Microflow Rate Controller for Medical Injection (주사용 미세유량 조절기 설계와 제작)

  • Kim, Byoung-Jae;Lee, Sang-Bin;Shin, Bo-Sung;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.154-159
    • /
    • 2004
  • A new microflow rate controller for medical injection was developed and evaluated. The flow rate was controlled by changing the friction depth as well as the friction length of the micro-channel. A precise micro-fabrication of the micro-channel was requested for an accurate flow control. The friction depth was inversely proportional to the friction length, which gives a linear flow control to the channel length. The channel groove was fabricated with a plastic material. A rubber containing silicone oil was covered over the groove, which satisfies both lubrication and leakage prevention. The flow controller was validated by performing the numerical simulation and experiment. A good agreement was shown between computation and experiment.