• Title/Summary/Keyword: Micro Powder

Search Result 473, Processing Time 0.028 seconds

Thermomechanical Properties of $\beta$-Sialon Synthesized from Kaolin (카올린으로부터 합성한 $\beta$-Sialon의 열적.기계적 성질)

  • Lee, Hong-Lim;Lim, Hun-Jin;Kim, Shin;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.349-356
    • /
    • 1987
  • ${\beta}$-Sialon powder was synthesized by the simultaneous reduction and nitridation of Hadong kaolin at 1350$^{\circ}C$ in N2-H2 atmosphere, using graphite as a reducing agent. The synthesized ${\beta}$-Sialon powder was pressurelessly sintered over 1450-1850$^{\circ}C$ in nitrogen atmosphere. The average particle size of ${\beta}$-Sialon powder was about 4.5$\mu\textrm{m}$. The relative density, M.O.R., fracture toughness and micro-hardness of ${\beta}$-Sialon ceramics sintered at 1800$^{\circ}C$ for 1 hour were 92%, 36 kpsi, 2.8MN/㎥/2 and 13.3 GN/㎡, respectively. The critical temperature difference (ΔT) in water quench thermal shock behavior showed about 375$^{\circ}C$ for the synthesized ${\beta}$-Sialon ceramics.

  • PDF

A Study of Chloride Diffusion Coefficient and Microstructure of High Fluidity Concrete Using Limestone Powder (석회석 미분말을 활용한 고유동 콘크리트의 염소이온 확산계수와 미세공극에 관한 연구)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Kim, Kyung-Hwan;Ha, Sang-Woo;Ryu, Deuk-Hyun;Oh, Sung-Rok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.199-200
    • /
    • 2010
  • This paper was estimated the diffusion coefficient through the chlorine ion diffusion coefficient of the high fluidity concrete using the limestone powder. Also, the micro void of high fluidity concrete examined according to the mixing ratio of the limestone powder by the mercury intrusion porosimetry.

  • PDF

A Study on the Optimization for the Blasting Process of Glass by Taguchi Method (다구찌 기법을 이용한 유리소재의 블라스팅 가공공정의 최적화에 관한 연구)

  • Yoo, Woo-Sik;Jin, Quan-Qia;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • The powder blasting process has become an important machining technique for the cost effective fabrication of micro devices. This process is similar to sand blasting, and effectively removes hard and brittle materials. A large number of investigations on the abrasive jet machining with such output parameters as material removal rate, penetration and surface roughness have been carried out and reported by various authors. To achieve higher surface roughness, to increase material removal rate and to identify the influence of blasting parameters on the output parameters, we use the taguchi method which is one of the design methods of experiments. We can select process parameters to optimize the blasting process of glass. Experimental results indicate that the taguchi method is useful as a robust design methodology for the powder blasting process.

Highly Complex Green Parts in Excellent Quality

  • Nies, Norbert;Peters, Detlef
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.747-749
    • /
    • 2006
  • SMS Meer GmbH, formerly Mannesmann and today part of the SMS Group, has been building powder presses since the early 1950s. The patents developed here in this field have long since documented the pioneering work carried out for the PM industry. The paper focuses on the challenge of reconciling the contradictory demands in the production of highly complex and crack-free PM parts. The process employed with the patented Controlled Punch Adapter (CPA) [1] counters possible cracking reliably and directly at the source. In this way is it possible to develop new and highly complex parts to series production maturity in a minimum of time even without simulation of the press cycle [2]. The quality data achieved in the production series, almost 100% crack and micro crack-free green parts with optimum density distribution over all press levels is unrivalled and thus gives the user a clear lead over the competition.

  • PDF

Nozzles from Alumina Ceramics with Submicron Structure Fabricated by Radial Pulsed Compaction

  • Kaygorodov, Anton;Rhee, Chang;Kim, Whung-Whoe;Ivanov, Viktor;Paranin, Sergey;Spirin, Alexey;Khrustov, Vladimir
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.368-369
    • /
    • 2006
  • By means of magnetic pulsed compaction and sintering of weakly aggregated alumina based nanopowders the jet forming nozzle samples for the hydroabrasive cutting were fabricated. The ceramics was obtained from pure alumina, as well as from alumina, doped by $TiO_2$, MgO and AlMg. It was shown that the samples sintered from AlMg doped $Al_2O_3$ powder have the best mechanical properties and structural characteristics: relative density ${\sim}0.97$, channel microhardness. - 18-20 GPa, channel surface roughness ${\sim}0.7\;{\mu}m$, average crystallite size ${\sim}1\;{\mu}m$.

  • PDF

Improvement of Geometric Accuracy using Powder Mixed Electro-chemical Discharge Machining Process (전해액 내 혼합된 미세 전도성 입자를 이용한 전해 방전 가공의 형상 정밀도 향상)

  • Han M.S.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.366-369
    • /
    • 2005
  • Electrochemical discharge machining (ECDM) has been found to be potential fur the micro-machining of non-conductive materials such as ceramics or glass. However this machining process has its own inherent problem that the reproducibility is too low to get the available geometric accuracy fur micromachining applications. One main challenge in reaching this goal is the control of the hydrogen built around the tool-electrode in which happen the discharges. This paper proposes the methods to improve the geometric accuracy using powder-mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy by averaging and decreasing the concentration of spark energy.

  • PDF

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N;Lee, Hyun Chul;Chu, Min Cheol;Ryu, Jae-Kyung;Balakrishnan, Avinash;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.492-496
    • /
    • 2015
  • Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.

Analysis of Particle Rearrangement during Sintering by Micro Focus Computed Tomography $({\mu}CT)$

  • Nothe, M.;Schulze, M.;Grupp, R.;Kieback, B.;Haibel, A.;Banhart, J.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.808-809
    • /
    • 2006
  • The decrease of the distance between particle centers due to the growth of the sinter necks can be explained by the well known two-particle model. Unfortunately this model fails to provide a comprehensive description of the processes for 3D specimens. Furthermore, there is a significant discrepancy between the calculated and the measured shrinkage because particle rearrangements are not considered. Only the recently developed analysis of the particle movements inside of 3D specimens using micro focus computed tomography $({\mu}CT)$, combined with photogrammetric image analysis, can deliver the necessary experimental data to improve existing sintering theories. In this work, ${\mu}CT$ analysis was applied to spherical copper powders. Based on photogrammetric image analysis, it is possible to determine the positions of all particle centers for tracking the particles over the entire sintering process and to follow the formation and breaking of the particle bonds. In this paper, we present an in-depth analysis of the obtained data. In the future, high resolution synchrotron radiation tomography will be utilized to obtain in-situ data and images of higher resolution.

  • PDF