• 제목/요약/키워드: Micro Porosity

검색결과 189건 처리시간 0.019초

고온하의 시멘트 경화체의 공극구조 (Pore Structure of Cement Matrix Exposed to High Temperatures)

  • 송훈;도정윤;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.509-512
    • /
    • 2003
  • Dehydration and micro crack thermal expansion occur in cement hydrates of concrete structure heated by fire for a long time. The characteristic of concrete exposed to high temperature can be analyzed from distribution of porosity and pore size. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. Porosity did not affect the variety of specimen and increased with the same tendency throughout every specimen. In addition, the deteriorate of compressive strength resulted from increase in porosity

  • PDF

Porosity and pore size distribution in high-viscosity and conventional glass ionomer cements: a micro-computed tomography study

  • Aline Borburema Neves ;Laisa Inara Gracindo Lopes;Tamiris Gomes Bergstrom;Aline Saddock Sa da Silva ;Ricardo Tadeu Lopes ;Aline de Almeida Neves
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.57.1-57.9
    • /
    • 2021
  • Objectives: This study aimed to compare and evaluate the porosity and pore size distribution of high-viscosity glass ionomer cements (HVGICs) and conventional glass ionomer cements (GICs) using micro-computed tomography (micro-CT). Materials and Methods: Forty cylindrical specimens (n = 10) were produced in standardized molds using HVGICs and conventional GICs (Ketac Molar Easymix, Vitro Molar, MaxxionR, and Riva Self-Cure). The specimens were prepared according to ISO 9917-1 standards, scanned in a high-energy micro-CT device, and reconstructed using specific parameters. After reconstruction, segmentation procedures, and image analysis, total porosity and pore size distribution were obtained for specimens in each group. After checking the normality of the data distribution, the Kruskal-Wallis test followed by the Student-Newman-Keuls test was used to detect differences in porosity among the experimental groups with a 5% significance level. Results: Ketac Molar Easymix showed statistically significantly lower total porosity (0.15%) than MaxxionR (0.62%), Riva (0.42%), and Vitro Molar (0.57%). The pore size in all experimental cements was within the small-size range (< 0.01 mm3), but Vitro Molar showed statistically significantly more pores/defects with a larger size (> 0.01 mm3). Conclusions: Major differences in porosity and pore size were identified among the evaluated GICs. Among these, the Ketac Molar Easymix HVGIC showed the lowest porosity and void size.

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique

  • Malik, Ruchi;Mukherjee, Manisha;Swami, Aditya;Ramteke, Dilip S.;Sarin, Rajkamal
    • Carbon letters
    • /
    • 제5권2호
    • /
    • pp.75-80
    • /
    • 2004
  • The studies on activated carbon prepared from walnut shell and groundnut shell were undertaken to ascertain the effect of initial state of precursor and activation process on the development of porosity in the resulting activated carbon. Walnut shell based carbon shows the presence of cellular pores while Groundnut shell based carbon shows fibrillar pore structure. The adsorption parameters, characterization of product and scanning electron microscopic studies carried out showed the presence of mainly Micro, Meso and Macro porosity in carbon prepared from Walnut shell while mainly micro porosity was observed in Groundnut shell based activated carbon. An interrelationship between the adsorption efficiency and porosity in terms of quality control parameters, for before and after activation, was validated through the scanning electron microscopic data.

  • PDF

무기질 폴리머계 흡수방지재를 도포한 모르터의 발수성능 평가에 관한 실험적 연구 (An Experimental Study on the Water Repellent Property of Mortar Applied Water Repellent Agent of Inorganic Polymer Type)

  • 김영삼;양승도;유재강;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.31-36
    • /
    • 2002
  • Recently, more interests in surface treatment of structure with water repellent agent are steadily increased, But, investigation of its properties such as protection, durability, morphology of micro structure is not sufficient. Therefore, This paper is aimed for the investigation of water repellent property and change of morphology of micro pores in mortar that is treated by water repellent agent(Inorganic polymer based material). Water repellent property, water absorption coefficient, air permeability, porosity and the observation of micro structure was investigated in different water repellent agent type. The test results indicated that water repellent treated mortar showed low absorption coefficient and air permeability(breathing effect). This is why inorganic polymer is coated at the wall of capillary and micro pores, also, the volume of micro pore is reduced without the change of morphology in micro structure.

  • PDF

Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory

  • Ebrahimi, Farzad;Mahmoodi, Fateme;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • 제6권3호
    • /
    • pp.279-301
    • /
    • 2017
  • Thermo-mechanical vibration characteristics of in homogeneousporous functionally graded (FG) micro/nanobeam subjected to various types of thermal loadings are investigated in the present paper based on modified couple stress theory with consideration of the exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which shear deformation effect is verified needless of shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of FG micro/nanobeam. Temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Extended Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.

Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향 (Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity)

  • 십건
    • 지구물리와물리탐사
    • /
    • 제11권1호
    • /
    • pp.41-51
    • /
    • 2008
  • 해양성 현무암층에 대해 현장에서의 속도와 공극률의 관계를 알기 위해서 Juan do Fuca 해저산맥의 동쪽 측면으로부터 채취한 현무암 시료들에 대해 최고 40MPa 구속압력(confining pressure)하에서 균열 특성을 고려하며 P파와 S파 속도를 측정하였다. 구속압력에 따른 속도의 변화는 미세균열의 닫힘(microcrack closure)에 기인한다고 가정하고, Kuster-$Toks{\ddot{o}}z$ 이론을 이용하여 미세균열의 개구비 스펙트라(micro-crack aspect ratio spectra)를 측정하였다. 그 결과 서로 다른 시료들의 정규화된 개구비 스펙트라들이 유사한 특성을 갖는다는 것을 보여주었다. 그리고 나서 정규화된 개구비 스펙트럼(spectrum)으로부터, 각 공극률에 대한 개구비 스펙트럼을 계산함으로써 이론적인 속도와 공극률의 관계를 만들었다. 또한 구속압력에 따른 미세균열 닫힘을 고려하여 구속압력의 함수로서의 속도-공극률 관계를 얻을 수 있었다. 개구비 스펙트라를 고려한 이론적인 관계는 대기압하에서 측정된 100개가 넘는 시료들에 대해 관찰된 관계와 잘 일치하고, 넓은 범의의 공극률에 대해 일반적으로 관찰되는 압력 의존적인 관계와도 잘 일치된다. 실험에서 유도된 자료들과 이론적으로 계산된 값들의 일치를 통해 Juan de Fuca 해저산맥의 동쪽 측면으로부터 얻어진 현무암 시료의 속도와 공극률의 관계는 균열의 특성(즉, 정규화된 개구비 스펙트라)과 균열 담힘에 의해 설명되어질 수 있음을 알 수 있다.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.