DOI QR코드

DOI QR Code

Porosity and pore size distribution in high-viscosity and conventional glass ionomer cements: a micro-computed tomography study

  • Aline Borburema Neves (Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro – UFRJ, School of Dentistry) ;
  • Laisa Inara Gracindo Lopes (Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro – UFRJ, School of Dentistry) ;
  • Tamiris Gomes Bergstrom (Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro – UFRJ, School of Dentistry) ;
  • Aline Saddock Sa da Silva (Laboratory of Nuclear Instrumentation, Universidade Federal do Rio de Janeiro – UFRJ) ;
  • Ricardo Tadeu Lopes (Laboratory of Nuclear Instrumentation, Universidade Federal do Rio de Janeiro – UFRJ) ;
  • Aline de Almeida Neves (Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro – UFRJ, School of Dentistry)
  • Received : 2020.11.24
  • Accepted : 2021.03.10
  • Published : 2021.11.30

Abstract

Objectives: This study aimed to compare and evaluate the porosity and pore size distribution of high-viscosity glass ionomer cements (HVGICs) and conventional glass ionomer cements (GICs) using micro-computed tomography (micro-CT). Materials and Methods: Forty cylindrical specimens (n = 10) were produced in standardized molds using HVGICs and conventional GICs (Ketac Molar Easymix, Vitro Molar, MaxxionR, and Riva Self-Cure). The specimens were prepared according to ISO 9917-1 standards, scanned in a high-energy micro-CT device, and reconstructed using specific parameters. After reconstruction, segmentation procedures, and image analysis, total porosity and pore size distribution were obtained for specimens in each group. After checking the normality of the data distribution, the Kruskal-Wallis test followed by the Student-Newman-Keuls test was used to detect differences in porosity among the experimental groups with a 5% significance level. Results: Ketac Molar Easymix showed statistically significantly lower total porosity (0.15%) than MaxxionR (0.62%), Riva (0.42%), and Vitro Molar (0.57%). The pore size in all experimental cements was within the small-size range (< 0.01 mm3), but Vitro Molar showed statistically significantly more pores/defects with a larger size (> 0.01 mm3). Conclusions: Major differences in porosity and pore size were identified among the evaluated GICs. Among these, the Ketac Molar Easymix HVGIC showed the lowest porosity and void size.

Keywords

Acknowledgement

This study was supported by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Finance code 001, Conselho Nacional de Pesquisa Cientifica (CNPq) and Fundacao Carlos Chagas de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) grant number E-26/203.185/2016.

References

  1. Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater 2016;7:16.
  2. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, Peumans M, Lambrechts P, Van Meerbeek B. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater 2009;25:1347-1357. https://doi.org/10.1016/j.dental.2009.06.004
  3. Berg JH, Croll TP. Glass ionomer restorative cement systems: an update. Pediatr Dent 2015;37:116-124.
  4. Hesse D, Bonifacio CC, Bonecker M, Guglielmi Cde A, da Franca C, van Amerongen WE, Colares V, Raggio DP. Survival rate of Atraumatic Restorative Treatment (ART) restorations using a glass ionomer bilayer technique with a nanofilled coating: a Bi-center randomized clinical trial. Pediatr Dent 2016;38:18-24.
  5. Burke FJT, Lucarotti PSK. The ultimate guide to restoration longevity in England and Wales. Part 3: glass ionomer restorations - time to next intervention and to extraction of the restored tooth. Br Dent J 2018;224:865-874. https://doi.org/10.1038/sj.bdj.2018.436
  6. Frankenberger R, Sindel J, Kramer N. Viscous glass-ionomer cements: a new alternative to amalgam in the primary dentition? Quintessence Int 1997;28:667-676.
  7. Schwendicke F, Gostemeyer G, Blunck U, Paris S, Hsu LY, Tu YK. Directly placed restorative materials: Review and network meta-analysis. J Dent Res 2016;95:613-622. https://doi.org/10.1177/0022034516631285
  8. van Dijken JW, Pallesen U. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up. Clin Oral Investig 2010;14:217-222. https://doi.org/10.1007/s00784-009-0287-z
  9. Leal S, Bonifacio C, Raggio D, Frencken J. Atraumatic restorative treatment: restorative component. Monogr Oral Sci 2018;27:92-102. https://doi.org/10.1159/000487836
  10. Hilgert LA, de Amorim RG, Leal SC, Mulder J, Creugers NH, Frencken JE. Is high-viscosity glass-ionomer-cement a successor to amalgam for treating primary molars? Dent Mater 2014;30:1172-1178. https://doi.org/10.1016/j.dental.2014.07.010
  11. de Amorim RG, Frencken JE, Raggio DP, Chen X, Hu X, Leal SC. Survival percentages of atraumatic restorative treatment (ART) restorations and sealants in posterior teeth: an updated systematic review and meta-analysis. Clin Oral Investig 2018;22:2703-2725. https://doi.org/10.1007/s00784-018-2625-5
  12. Nomoto R, McCabe JF. Effect of mixing methods on the compressive strength of glass ionomer cements. J Dent 2001;29:205-210. https://doi.org/10.1016/S0300-5712(01)00010-0
  13. Nimmo JR. Porosity and pore size distribution. Reference module in earth systems and environmental sciences. Amsterdam: Elsevier; 2013. 
  14. Mitchell CA, Douglas WH. Comparison of the porosity of hand-mixed and capsulated glass-ionomer luting cements. Biomaterials 1997;18:1127-1131. https://doi.org/10.1016/S0142-9612(97)00038-0
  15. Nicholson JW. Maturation processes in glass-ionomer dental cements. Acta Biomater Odontol Scand 2018;4:63-71. https://doi.org/10.1080/23337931.2018.1497492
  16. Geirsson J, Thompson JY, Bayne SC. Porosity evaluation and pore size distribution of a novel directly placed ceramic restorative material. Dent Mater 2004;20:987-995. https://doi.org/10.1016/j.dental.2004.07.003
  17. Coldebella CR, Santos-Pinto L, Zuanon AC. Effect of ultrasonic excitation on the porosity of glass ionomer cement: a scanning electron microscope evaluation. Microsc Res Tech 2011;74:54-57. https://doi.org/10.1002/jemt.20873
  18. Covey DA, Ewoldsen NO. Porosity in manually and machine mixed resin-modified glass ionomer cements. Oper Dent 2001;26:617-623.
  19. Malkoc MA, Sevimay M, Tatar I, Celik HH. Micro-CT detection and characterization of porosity in luting cements. J Prosthodont 2015;24:553-561. https://doi.org/10.1111/jopr.12251
  20. Nomoto R, Komoriyama M, McCabe JF, Hirano S. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent Mater 2004;20:972-978. https://doi.org/10.1016/j.dental.2004.03.001
  21. De Souza ET, Nunes Tameirao MD, Roter JM, De Assis JT, De Almeida Neves A, De-Deus GA. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microsc Res Tech 2013;76:1093-1098. https://doi.org/10.1002/jemt.22270
  22. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39:175-191. https://doi.org/10.3758/BF03193146
  23. Calvo AF, Kicuti A, Tedesco TK, Braga MM, Raggio DP. Evaluation of the relationship between the cost and properties of glass ionomer cements indicated for atraumatic restorative treatment. Braz Oral Res 2016;30:S1806-83242016000100201.
  24. Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M. A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics 2010;11:274.
  25. Anna Luisa de Brito P, Isabel Cristina O, Clarissa Calil B, Ana Flavia Bissoto C, Jose Carlos Pettorossi I, Daniela Procida R. One year survival rate of Ketac Molar versus Vitro Molar for occlusoproximal ART restorations: a RCT. Braz Oral Res 2017;31:e88.
  26. Bonifacio CC, Hesse D, Raggio DP, Bonecker M, van Loveren C, van Amerongen WE. The effect of GIC-brand on the survival rate of proximal-ART restorations. Int J Paediatr Dent 2013;23:251-258. https://doi.org/10.1111/j.1365-263X.2012.01259.x
  27. Benetti AR, Jacobsen J, Lehnhoff B, Momsen NC, Okhrimenko DV, Telling MT, Kardjilov N, Strobl M, Seydel T, Manke I, Bordallo HN. How mobile are protons in the structure of dental glass ionomer cements? Sci Rep 2015;5:8972.
  28. Peez R, Frank S. The physical-mechanical performance of the new Ketac Molar Easymix compared to commercially available glass ionomer restoratives. J Dent 2006;34:582-587. https://doi.org/10.1016/j.jdent.2004.12.009
  29. Raggio DP, Bonifacio CC, Bonecker M, Imparato JC, Gee AJ, Amerongen WE. Effect of insertion method on Knoop hardness of high viscous glass ionomer cements. Braz Dent J 2010;21:439-445. https://doi.org/10.1590/S0103-64402010000500011
  30. Neves AB, Bergstrom TG, Fonseca-Goncalves A, Dos Santos TMP, Lopes RT, de Almeida Neves A. Mineral density changes in bovine carious dentin after treatment with bioactive dental cements: a comparative micro-CT study. Clin Oral Investig 2019;23:1865-1870. https://doi.org/10.1007/s00784-018-2644-2
  31. Bonifacio CC, Kleverlaan CJ, Raggio DP, Werner A, de Carvalho RC, van Amerongen WE. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Aust Dent J 2009;54:233-237. https://doi.org/10.1111/j.1834-7819.2009.01125.x
  32. Nicholson J, Czarnecka B. Conventional glass-ionomer cements. In: Nicholson J, Czarnecka B, editors. Materials for the direct restoration of teeth. Amsterdam: Elsevier; 2016. p107-136. 
  33. Santa G, Bentz D, Weiss J. Capillary porosity depercolation in cement-based materials: Measurement techniques and factors which influence their interpretation. Cement Concr Res 2011;41:854-864. https://doi.org/10.1016/j.cemconres.2011.04.006