• Title/Summary/Keyword: Micro Hardness

Search Result 732, Processing Time 0.03 seconds

Ni-Co Alloy Electroforming for Micro Mold Fabrication (마이크로 금형 제작을 위한 니켈-코발트 합금 전주기술개발)

  • Shin S. H.;Jeong M. K.;Kim Y. S.;Han S. H.;Hur Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The factors affecting Ni-Co alloy electroforming were investigated to determine the optimum bath composition and electroplating parameters, like pH, temperature, and current density, suitable for high speed fabrication of a micro mold with longer lifetime. To obtain alloy deposits having uniform thickness and composition, electroplating parameters were finely tuned with home-made electroforming apparatus. Ni-Co alloy deposits had linearly increased Co with $Co^{2+}$ ion concentration in electroplating bath, and showing $412H_v$ of Victors hardness at $23wt\%$ of Co content. For Ni-Co alloy, sulfonate and diol related organic additives were very effective to alleviate its residual stress and surface roughness. The maximum deposition rate was $106{\mu}m/hr$ at 10ASD and the tensile strength of alloy deposit was 2 times larger than that of Ni only case.

  • PDF

Effect of Nitrogen Gas Pressure on the Property of TiN-Coated Layer of High Speed Steel by Arc ion Plating (AIP 법에서 질소가스 압력이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.124-130
    • /
    • 2008
  • The effect of nitrogen gas pressure in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured fur various nitrogen gas pressures. It has been shown that the nitrogen gas pressure has a considerable effect on the surface roughness, adhesion strength, atomic distribution of TiN, and surface deposition of TiN of the high speed steels but that it has little influence on the micro-hardness and coated thickness.

A Study on the Effect of Process Parameters to Mechanical Property in Forward Extrusion of Milli-size Cylindrical Pin (밀리 단위의 원형핀 전방압출에 있어서 공정인자가 기계적 성질에 미치는 영향 연구)

  • 심경섭;김용일;이용신;김종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.797-801
    • /
    • 2003
  • The mechanical properties such as shear strength and the hardness of milli-size products that manufactured for various process parameters by forward extrusion using square dies are investigated. Shear strength test is implemented for the observation of relation between vickers hardness and shear strength in the interface of head and shaft part of a stepped pin. When the extrusion ratios of pure aluminum and pure copper billets increase, the hardness on both the surface and the center line of a pin also increase, especially the hardness on the surface is shown to be a little higher than on the center. The existence of knock-out pad in extrusion die caused hardness increase in the interface of a extruded pin. As compared shear strength with hardness of a pin, the approximated linear relations are suggested in this study.

  • PDF

A Study on the Analysis of Plastic Zone in Carbon Steel after Strain Aginig (변형시효처리한 탄소강의 소성역 해석에 관한 연구)

  • 손세원;이진수;장정원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.933-937
    • /
    • 1996
  • In this paper, the behavior of plastic zone in the notch tip was studied under Loye's Micro Vickers Hardness Measurement Method. The direction forming maximum plastic zone was estimated by finite element analysis. In the experiments, cold rolling sheet SGCD3, SK5 and hot rolling sheet SS41, S4SC was used to study the influence of carbon contents on plastic zone. The standard hardness test specimen and the notch hardness test specimen was made and loaded cyclically. The specimen was aged to stabilize the hardness. After aging treatment, the notch specimen was made and simple tension load of 50% yield strength was applied. The hardness test at the notch tip until the hardness data of standard hardness specimen was checked was performed.

  • PDF

Effects of knock-out Pad and Extrusion Ratio on Mechanical Property Changes in Milli-Forward Extrusion of Cylindrical Pin (원형핀의 밀리 전방압출에서 녹아웃패드와 압출비가 기계적 성질 변화에 미치는 영향)

  • 심경섭;김용일;이용신;김종호
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.582-587
    • /
    • 2003
  • This paper is concerned with the mechanical property changes of the milli-size products manufactured by forward extrusion processes with square dies. Experiments are carried out with pure aluminum and pure copper billets. Extrusion ratio and knock-out pad are chosen as the important process parameters affecting the changes of mechanical properties such as shear strength and hardness. Shear strength tests with the extruded milli-size pin have shown the strong relation between victors hardness and shear strength in the neck of a stepped pin. As the extrusion ratio increases, the hardness on both the surface and the center line of a pin also increase. It is also noted that the hardness on the surface is a little higher than that on the center. The existence of knock-out pad in extrusion die causes the hardness in the neck of a extruded pin to increase. Finally, the approximated linear relations between shear strength and hardness of a pin are suggested.

Micro-drilling of alumina green body with diamond abrasive drills (다이아몬드 입자 전착 드릴에 의한 알루미나 성형제의 미소구멍가공)

  • 이학구;방경근;김포진;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.926-931
    • /
    • 2002
  • Although ceramic plates with many micro-hales are used as MCP (Micro-channel plate) for electron amplification, catalytic converters, filters, electrical insulators and thermal conductors in integrated circuits, the drilling of micro-hales in the ceramics is difficult because of their low thermal conductivity, high hardness and brittleness. Therefore, in this work, the machining of ceramic green body fellowed by sintering of green body was employed fur fabricating ceramic plates with many micro-holes. The micro-drilling of alumina green body was performed with diamond abrasive WC drills, and the cutting force w.r.t. drilling times was measured for the determination of toot life. From the investigation of the wear of micro-drill tip w.r.t. drilling times, the wear mechanism of tip during micro-drilling of ceramic green body was suggested.

  • PDF

Microstructure and Hardness of Ti-X%Cu(X=2,5,10) Alloys for Dental Castings (치과주조용 Ti-X%Cu(X=2,5,10)합금의 미세조직 및 경도)

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.31 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • This study evaluated the mechanical properties of Ti-Cu alloys with the hope of developing an alloy for dental casting with better mechanical properties than unalloyed titanium. Ti-Cu alloys with four concentrations of Cu(2,5,10wt%) were made in an argon-arc melting furnace. The microstructure and micro-Vickers hardness were determined. X-ray diffraction pattern test was performed on the polished specimens. The microstructure of 2%Cu and 5%Cu alloys are shown acicular ${\alpha}Ti$ phase formed on the surfaces of previously formed $\beta$grains. The 10%Cu alloys has essentially a eutectoid structure; this structure includes lamella of ${\alpha}Ti$ and $Ti_2Cu$ phase that transformed from ${\alpha}Ti$ at the eutectoid temperature. The micro-Vickers hardness of CP Ti specimens was significantly(p<0.05) lower than that of any of the other alloys. Among the Ti-Cu alloys, the 10%Cu alloys exhibited a significantly(p<0.05) higher hardness value. but lower than that of Ti-6%Al-4%V alloy. From these results, it was concluded that new alloys for dental castings should be designed as Ti-Cu based alloys if other properties necessary for dental castings were obtained.

  • PDF

Electrochemical Study on the Effect of Post-Weld Heat Treatment Affecting to Corrosion Resistance Property of the Weldment of SCM440 Steel (SCM440강 용접부의 내식성에 미치는 용접후 열처리효과에 관한 전기화학적 연구)

  • 김성종;김진경;김종호;김기준;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.78-88
    • /
    • 2000
  • The effect of post-weld heat treatment(PWHT) of SCM440 steel was investigated with parameters such as micro-Vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss, etc. Each hardness of three parts(HAZ, BM, WM) by PWHT is lower than each of as-welded parts. However, hardness of WM area was the highest among those three parts in case of both PWHT and as-welded. Corrosion potential of WM part was the highest among those three parts and WM area was also acted as cathode without regard to PWHT. The magnitude of corrosion potential difference among three parts by PWHT was larger than that of three parts of as-welded, and corrosion current by galvanic cell of these three parts by PWHT was also larger compared to as-welded. Therefore, it is suggested that corrosion resistance property of SCM440 steel is decreased by PWHT than as-welded. However, both Al anode generating current and anode weight loss were also increased by PWHT compared to as-welded when SCM400 steel is cathodically protected by Al anode.

  • PDF

Mechanical Properties of Forged Nimonic 80A Superalloy Fabricated by Vacuum Spray Casting (진공분무주조법에 의해 제조한 Nimonic 80A 초내열합금 단조재의 기계적 특성)

  • Lee, Yun-Soo;Hyun, Soong-Keun;Jung, Dae-Hyun;Byun, Joong-Sig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.263-270
    • /
    • 2012
  • This study investigates the effect of heat treatment on the mechanical properties of a forged Ni-based superalloy called Nimonic 80A. Nimonic 80A ingot samples were fabricated by vacuum spray casting to achieve a fine and homogenized microstructure. The ingot samples were subsequently hot-forged with the diameter of 220 mm at 1373 K. From the center to the surface of the forged Nimonic 80A, its average grain size decreased and its micro-Vickers hardness increased slightly. Solution treatment was carried out at 1353 K with 8 hours of air cooling followed by aging treatment, which was carried out in the range of 873-1073 K with various times from 0.5 to 256 hours. To set the optimum aging conditions, micro-Vickers hardness tests were performed. The maximum hardness value of 388.0 Hv was obtained by aging at 973 K for 32 hours. Also, tensile tests were performed for optimum aging conditions at room temperature and 873 K. The results can be used effectively to perform reasonable heat treatment of Nimonic 80A superalloy.